107 research outputs found

    Ueber zwei neue Reihen von Sauerstoffdoppelsalzen mit Goldoxydul

    Get PDF
    n/

    Gold and Silver - but safe?

    Get PDF
    Gold (Au) and silver (Ag) nanopartucles (NPs) are frequently used in medicine (drug delivery, wound dressings) but also more and more icorporated in every-day life products, such as functional clothing. Therfore, a comprehensive dafety assessment of such particles is essential. Teh aim of this work was the investigation of the suitability of standard DIN-EN-ISO protocolis for cytotoxicity assessment of NPs

    Nan-O-Style – experiments and arts

    Get PDF
    In this project, high school students (aged 16-17) tested various protocols of experiments in nanotechnology and evaluated them whether such experiments could also be performed by middle school students (aged 11-15) or even elementary school students (aged 6-10). Protocols pre-selected and provided by the instructing team consisting of Sciencetainment and the Department of Biosciences, University of Salzburg were applied. Laboratory techniques such as thin-layer chromatography, measuring the contact angle by high-resolution 3D microscopy and analyzing and constructing surface layers represented some of the experiments performed. Moreover, students produced short video clips and images and designed photo-collages out of microscopic and electron microscopic pictures. Hence, the school students acquired a number of soft skills during this special science day

    The cyanides of gold

    Full text link

    Diclofenac Hypersensitivity: Antibody Responses to the Parent Drug and Relevant Metabolites

    Get PDF
    Background: Hypersensitivity reactions against nonsteroidal antiinflammatory drugs (NSAIDs) like diclofenac (DF) can manifest as Type I-like allergic reactions including systemic anaphylaxis. However, except for isolated case studies experimental evidence for an IgE-mediated pathomechanism of DF hypersensitivity is lacking. In this study we aimed to investigate the possible involvement of drug-and/or metabolite-specific antibodies in selective DF hypersensitivity. Methodology/Principal Findings: DF, an organochemically synthesized linkage variant, and five major Phase I metabolites were covalently coupled to carrier proteins. Drug conjugates were analyzed for coupling degree and capacity to crosslink receptor-bound IgE antibodies from drug-sensitized mice. With these conjugates, the presence of hapten-specific IgE antibodies was investigated in patients' samples by ELISA, mediator release assay, and basophil activation test. Production of sulfidoleukotrienes by drug conjugates was determined in PBMCs from DF-hypersensitive patients. All conjugates were shown to carry more than two haptens per carrier molecule. Immunization of mice with drug conjugates induced drug-specific IgE antibodies capable of triggering mediator release. Therefore, the conjugates are suitable tools for detection of drug-specific antibodies and for determination of their anaphylactic activity. Fifty-nine patients were enrolled and categorized as hypersensitive either selectively to DF or to multiple NSAIDs. In none of the patients' samples evidence for drug/metabolite-specific IgE in serum or bound to allergic effector cells was found. In contrast, a small group of patients (8/59, 14%) displayed drug/metabolite-specific IgG. Conclusions/Significance: We found no evidence for an IgE-mediated effector mechanism based on haptenation of protein carriers in DF-hypersensitive patients. Furthermore, a potential involvement of the most relevant metabolites in DF hypersensitivity reactions could be excluded

    The microRNA-29 family in cartilage homeostasis and osteoarthritis

    Get PDF
    MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family were also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFβ1 decreased expression of miR-29a, b and c (3p) in primary chondrocytes, whilst IL-1β increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFκB and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways

    Enhanced inhibition of Avian leukosis virus subgroup J replication by multi-target miRNAs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian leukosis virus (ALV) is a major infectious disease that impacts the poultry industry worldwide. Despite intensive efforts, no effective vaccine has been developed against ALV because of mutations that lead to resistant forms. Therefore, there is a dire need to develop antiviral agents for the treatment of ALV infections and RNA interference (RNAi) is considered an effective antiviral strategy.</p> <p>Results</p> <p>In this study, the avian leukosis virus subgroup J (ALV-J) proviral genome, including the <it>gag </it>genes, were treated as targets for RNAi. Four pairs of miRNA sequences were designed and synthesized that targeted different regions of the <it>gag </it>gene. The screened target (i.e., the <it>gag </it>genes) was shown to effectively suppress the replication of ALV-J by 19.0-77.3%. To avoid the generation of escape variants during virus infection, expression vectors of multi-target miRNAs were constructed using the multi-target serial strategy (against different regions of the <it>gag</it>, <it>pol</it>, and <it>env </it>genes). Multi-target miRNAs were shown to play a synergistic role in the inhibition of ALV-J replication, with an inhibition efficiency of viral replication ranging from 85.0-91.2%.</p> <p>Conclusion</p> <p>The strategy of multi-target miRNAs might be an effective method for inhibiting ALV replication and the acquisition of resistant mutations.</p

    Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems

    Get PDF
    This study investigated telomeric array organization of diverse chicken genotypes utilizing in vivo and in vitro cells having phenotypes with different proliferation potencies. Our experimental objective was to characterize the extent and nature of array variation present to explore the hypothesis that mega-telomeres are a universal and fixed feature of chicken genotypes. Four different genotypes were studied including normal (UCD 001, USDA-ADOL Line 0), immortalized (DF-1), and transformed (DT40) cells. Both cytogenetic and molecular approaches were utilized to develop an integrated view of telomeric array organization. It was determined that significant variation exists within and among chicken genotypes for chromosome-specific telomeric array organization and total genomic-telomeric sequence content. Although there was variation for mega-telomere number and distribution, two mega-telomere loci were in common among chicken genetic lines (GGA 9 and GGA W). The DF-1 cell line was discovered to maintain a complex derivative karyotype involving chromosome fusions in the homozygous and heterozygous condition. Also, the DF-1 cell line was found to contain the greatest amount of telomeric sequence per genome (17%) as compared to UCD 001 (5%) and DT40 (1.2%). The chicken is an excellent model for studying unique and universal features of vertebrate telomere biology, and characterization of the telomere length variation among genotypes will be useful in the exploration of mechanisms controlling telomere length maintenance in different cell types having unique phenotypes

    Herpesvirus Telomerase RNA (vTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis

    Get PDF
    Telomerase reverse transcriptase (TERT) and telomerase RNA (TR) represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR) on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV) as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5) by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1) that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2) that this strategy could be used to generate novel vaccine candidates against virus-induced lymphoma
    • …
    corecore