6,649 research outputs found

    Antennas for 20/30 GHz and beyond

    Get PDF
    Antennas of 20/30 GHz and higher frequency, due to the small wavelength, offer capabilities for many space applications. With the government-sponsored space programs (such as ACTS) in recent years, the industry has gone through the learning curve of designing and developing high-performance, multi-function antennas in this frequency range. Design and analysis tools (such as the computer modelling used in feedhorn design and reflector surface and thermal distortion analysis) are available. The components/devices (such as BFN's, weight modules, feedhorns and etc.) are space-qualified. The manufacturing procedures (such as reflector surface control) are refined to meet the stringent tolerance accompanying high frequencies. The integration and testing facilities (such as Near-Field range) also advance to facilitate precision assembling and performance verification. These capabilities, essential to the successful design and development of high-frequency spaceborne antennas, shall find more space applications (such as ESGP) than just communications

    Teleportation and entanglement distillation in the presence of correlation among bipartite mixed states

    Get PDF
    The teleportation channel associated with an arbitrary bipartite state denotes the map that represents the change suffered by a teleported state when the bipartite state is used instead of the ideal maximally entangled state for teleportation. This work presents and proves an explicit expression of the teleportation channel for the teleportation using Weyl's projective unitary representation of the space of 2n-tuples of numbers from Z/dZ for integers d>1, n>0, which has been known for n=1. This formula allows any correlation among the n bipartite mixed states, and an application shows the existence of reliable schemes for distillation of entanglement from a sequence of mixed states with correlation.Comment: 12 pages, 1 figur

    Making a Universe

    Get PDF
    For understanding the origin of anisotropies in the cosmic microwave background, rules to construct a quantized universe is proposed based on the dynamical triangulation method of the simplicial quantum gravity. A dd-dimensional universe having the topology Dd D^d is created numerically in terms of a simplicial manifold with dd-simplices as the building blocks. The space coordinates of a universe are identified on the boundary surface Sd1 S^{d-1} , and the time coordinate is defined along the direction perpendicular to Sd1 S^{d-1} . Numerical simulations are made mainly for 2-dimensional universes, and analyzed to examine appropriateness of the construction rules by comparing to analytic results of the matrix model and the Liouville theory. Furthermore, a simulation in 4-dimension is made, and the result suggests an ability to analyze the observations on anisotropies by comparing to the scalar curvature correlation of a S2 S^2 -surface formed as the last scattering surface in the S3 S^3 universe.Comment: 27pages,18figures,using jpsj.st

    Practical Evaluation of Security for Quantum Key Distribution

    Full text link
    Many papers proved the security of quantum key distribution (QKD) system, in the asymptotic framework. The degree of the security has not been discussed in the finite coding-length framework, sufficiently. However, to guarantee any implemented QKD system requires, it is needed to evaluate a protocol with a finite coding-length. For this purpose, we derive a tight upper bound of the eavesdropper's information. This bound is better than existing bounds. We also obtain the exponential rate of the eavesdropper's information. Further, we approximate our bound by using the normal distribution.Comment: The manuscript has been modfie

    A comprehensive review of genetics and genetic testing in azoospermia

    Get PDF
    Azoospermia due to obstructive and non-obstructive mechanisms is a common manifestation of male infertility accounting for 10-15% of such cases. Known genetic factors are responsible for approximately 1/3 of cases of azoospermia. Nonetheless, at least 40% of cases are currently categorized as idiopathic and may be linked to unknown genetic abnormalities. It is recommended that various genetic screening tests are performed in azoospermic men, given that their results may play vital role in not only identifying the etiology but also in preventing the iatrogenic transmission of genetic defects to offspring via advanced assisted conception techniques. In the present review, we examine the current genetic information associated with azoospermia based on results from search engines, such as PUBMED, OVID, SCIENCE DIRECT and SCOPUS. We also present a critical appraisal of use of genetic testing in this subset of infertile patients

    RNA secondary structure prediction from multi-aligned sequences

    Full text link
    It has been well accepted that the RNA secondary structures of most functional non-coding RNAs (ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of conserved secondary structures from evolutionarily related sequences is one important task in RNA bioinformatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in which one secondary structure whose length is equal to that of the input alignment is predicted. I systematically review and classify existing tools and algorithms for the problem, by utilizing the information employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) estimators. I believe that this classification will allow a deeper understanding of each tool and provide users with useful information for selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in a chapter of the book `Methods in Molecular Biology'. Note that this version of the manuscript may differ from the published versio

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Temperaturas médias projetadas pelos modelos climáticos globais para o nordeste brasileiro.

    Get PDF
    As informações necessárias para avaliação dos impactos das mudanças climáticas são derivadas de projeções de modelos climáticos. As projeções são diferentes para cada região do mundo e variam ao longo das estações do ano. O objetivo deste trabalho foi avaliar a similaridade espacial entre modelos climáticos globais do Quarto Relatório de Avaliação do IPCC, quanto às projeções de temperatura média para a região Nordeste do Brasil, no período de 2071 a 2100, cenário A2. Para tanto, foram realizadas análise de componentes principais e análise de agrupamento hierárquico para identificar os modelos de comportamentos semelhantes. Adotando-se quatro grupos de modelos, a temperatura média projetada para os grupos variou de 28,19°C a 30,28°C de janeiro a junho e de 27,98°C a 30,10°C de julho a dezembro. Todos os modelos indicam aumentos de temperatura no futuro
    corecore