3,563 research outputs found

    Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements

    Get PDF
    Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware

    Exercise training in obese rats does not induce browning at thermoneutrality and induces a muscle-like signature in brown adipose tissue

    Get PDF
    Aim: Exercise training elicits diverse effects on brown (BAT) and white adipose tissue (WAT) physiology in rodents housed below their thermoneutral zone (i.e., 28–32°C). In these conditions, BAT is chronically hyperactive and, unlike human residence, closer to thermoneutrality. Therefore, we set out to determine the effects of exercise training in obese animals at 28°C (i.e., thermoneutrality) on BAT and WAT in its basal (i.e., inactive) state. Methods: Sprague-Dawley rats (n = 12) were housed at thermoneutrality from 3 weeks of age and fed a high-fat diet. At 12 weeks of age half these animals were randomized to 4-weeks of swim-training (1 h/day, 5 days per week). Following a metabolic assessment interscapular and perivascular BAT and inguinal (I)WAT were taken for analysis of thermogenic genes and the proteome. Results: Exercise attenuated weight gain but did not affect total fat mass or thermogenic gene expression. Proteomics revealed an impact of exercise training on 2-oxoglutarate metabolic process, mitochondrial respiratory chain complex IV, carbon metabolism, and oxidative phosphorylation. This was accompanied by an upregulation of multiple proteins involved in skeletal muscle physiology in BAT and an upregulation of muscle specific markers (i.e., Myod1, CkM, Mb, and MyoG). UCP1 mRNA was undetectable in IWAT with proteomics highlighting changes to DNA binding, the positive regulation of apoptosis, HIF-1 signaling and cytokine-cytokine receptor interaction. Conclusion: Exercise training reduced weight gain in obese animals at thermoneutrality and is accompanied by an oxidative signature in BAT which is accompanied by a muscle-like signature rather than induction of thermogenic genes. This may represent a new, UCP1-independent pathway through which BAT physiology is regulated by exercise training

    Enhanced light extraction from InGaN/GaN quantum wells with silver gratings

    Get PDF
    We demonstrate that an extraction enhancement by a factor of 2.8 can be obtained for a GaN quantum well structure using metallic nanostructures, compared to a flat semiconductor. The InGaN/GaN quantum well is inserted into a dielectric waveguide, naturally formed in the structure, and a silver grating is deposited on the surface and covered with a polymer film. The polymer layer greatly improves the extraction compared to a single metallic grating. The comparison of the experiments with simulations gives strong indications on the key role of weakly guided modes in the polymer layer diffracted by the grating.Peer reviewe

    Gene variant effects across sodium channelopathies predict function and guide precision therapy

    Get PDF
    Pathogenic variants in the voltage-gated sodium channel gene family (SCNs) lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function, but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterised in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. 35 out of 38 of those pairs resulted in similar functional consequences indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% CI = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non conserved domains (odds ratio = 18.6; 95% CI = 10.9 to 34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function (LoF) variants, whereas inactivation sites were associated with gain-of-function (GoF; odds ratio = 42.1, 95% CI = 14.5 to 122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first GoF versus LoF topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org)

    Maternal body weight and gestational diabetes differentially influence placental and pregnancy outcomes

    Get PDF
    Context: Maternal obesity and gestational diabetes mellitus (GDM) can both contribute to adverse neonatal outcomes. The extent to which this may be mediated by differences in placental metabolism and nutrient transport remains to be determined. Objective: Our objective was to examine whether raised maternal body mass index (BMI) and/or GDM contributed to a resetting of the expression of genes within the placenta that are involved in energy sensing, oxidative stress, inflammation, and metabolic pathways. Methods: Pregnant women from Spain were recruited as part of the “Study of Maternal Nutrition and Genetics on the Foetal Adiposity Programming” survey at the first antenatal visit (12–20 weeks of gestation) and stratified according to prepregnancy BMI and the incidence of GDM. At delivery, placenta and cord blood were sampled and newborn anthropometry measured. Results: Obese women with GDM had higher estimated fetal weight at 34 gestational weeks and a greater risk of preterm deliveries and cesarean section. Birth weight was unaffected by BMI or GDM; however, women who were obese with normal glucose tolerance had increased placental weight and higher plasma glucose and leptin at term. Gene expression for markers of placental energy sensing and oxidative stress, were primarily affected by maternal obesity as mTOR was reduced, whereas SIRT-1 and UCP2 were both upregulated. In placenta from obese women with GDM, gene expression for AMPK was also reduced, whereas the downstream regulator of mTOR, p70S6KB1 was raised. Conclusions: Placental gene expression is sensitive to both maternal obesity and GDM which both impact on energy sensing and could modulate the effect of either raised maternal BMI or GDM on birth weight
    corecore