192 research outputs found

    A biodiversity hypothesis

    Get PDF
    Biodiversity hypothesis states that contact with natural environments enriches the human microbiome, promotes immune balance and protects from allergy and inflammatory disorders. We are protected by two nested layers of biodiversity, microbiota of the outer layer (soil, natural waters, plants, animals) and inner layer (gut, skin, airways). The latter inhabits our body and is colonized from the outer layer. Explosion of human populations along with cultural evolution is profoundly changing our environment and lifestyle. Adaptive immunoregulatory circuits and dynamic homeostasis are at stake in the newly emerged urban surroundings. In allergy, and chronic inflammatory disorders in general, exploring the determinants of immunotolerance is the key for prevention and more effective treatment. Loss of immunoprotective factors, derived from nature, is a new kind of health risk poorly acknowledged until recently. The paradigm change has been implemented in the Finnish allergy programme (2008-2018), which emphasized tolerance instead of avoidance. The first results are promising, as allergy burden has started to reduce. The rapidly urbanizing world is facing serious biodiversity loss with global warming, which are interconnected. Biodiversity hypothesis of health and disease has societal impact, for example, on city planning, food and energy production and nature conservation. It has also a message for individuals for health and well-being: take nature close, to touch, eat, breathe, experience and enjoy. Biodiverse natural environments are dependent on planetary health, which should be a priority also among health professionals.Peer reviewe

    In silico transcriptional regulation and functional analysis of dengue shock syndrome associated SNPs in PLCE1 and MICB genes

    Get PDF
    YesSingle nucleotide polymorphisms (SNPs) in PLCE1 and MICB genes increase risk for the development of dengue shock syndrome (DSS). We used Bioinformatics tools to predict alterations at the transcriptional and posttranslational levels driven by PLCE1 and MICB SNPs associated with DSS. Functional and phenotypic analysis conducted to determine deleterious SNPs and impact of amino acid substitution on the structure and function of proteins identified rs2274223 (H1619R) as deleterious to protein coding as it induces structural change in the C2 domain of PLCε, with the mutant residue more positively charged than the wild-type residue (RMSD score, 1.75 Å).Moreover, rs2274223 condenses the chromatinrepressing PLCε expression in DSS. Briefly, this study presents the impact of a single nucleotide transition at SNPs associated with DSS on differential protein binding patterns with PLCE1 and MICB genes and on protein structure modification and their possible role in the pathogenesis of DSS

    The tale of TILs in breast cancer : a report from The International Immuno-Oncology Biomarker Working Group

    Get PDF
    The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC

    The path to a better biomarker: Application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice

    Get PDF
    Immune checkpoint inhibitor therapies targeting PD-1/PD-L1 are now the standard of care in oncology across several hematologic and solid tumor types, including triple negative breast cancer (TNBC). Patients with metastatic or locally advanced TNBC with PD-L1 expression on immune cells occupying 651% of tumor area demonstrated survival benefit with the addition of atezolizumab to nab-paclitaxel. However, concerns regarding variability between immunohistochemical PD-L1 assay performance and inter-reader reproducibility have been raised. High tumor-infiltrating lymphocytes (TILs) have also been associated with response to PD-1/PD-L1 inhibitors in patients with breast cancer (BC). TILs can be easily assessed on hematoxylin and eosin\u2013stained slides and have shown reliable inter-reader reproducibility. As an established prognostic factor in early stage TNBC, TILs are soon anticipated to be reported in daily practice in many pathology laboratories worldwide. Because TILs and PD-L1 are parts of an immunological spectrum in BC, we propose the systematic implementation of combined PD-L1 and TIL analyses as a more comprehensive immuno-oncological biomarker for patient selection for PD-1/PD-L1 inhibition-based therapy in patients with BC. Although practical and regulatory considerations differ by jurisdiction, the pathology community has the responsibility to patients to implement assays that lead to optimal patient selection. We propose herewith a risk-management framework that may help mitigate the risks of suboptimal patient selection for immuno-therapeutic approaches in clinical trials and daily practice based on combined TILs/PD-L1 assessment in BC. \ua9 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Polymorphic Structures of Alzheimer's β-Amyloid Globulomers

    Get PDF
    Misfolding and self-assembly of Amyloid-β (Aβ) peptides into amyloid fibrils is pathologically linked to the development of Alzheimer's disease. Polymorphic Aβ structures derived from monomers to intermediate oligomers, protofilaments, and mature fibrils have been often observed in solution. Some aggregates are on-pathway species to amyloid fibrils, while the others are off-pathway species that do not evolve into amyloid fibrils. Both on-pathway and off-pathway species could be biologically relevant species. But, the lack of atomic-level structural information for these Aβ species leads to the difficulty in the understanding of their biological roles in amyloid toxicity and amyloid formation.Here, we model a series of molecular structures of Aβ globulomers assembled by monomer and dimer building blocks using our peptide-packing program and explicit-solvent molecular dynamics (MD) simulations. Structural and energetic analysis shows that although Aβ globulomers could adopt different energetically favorable but structurally heterogeneous conformations in a rugged energy landscape, they are still preferentially organized by dynamic dimeric subunits with a hydrophobic core formed by the C-terminal residues independence of initial peptide packing and organization. Such structural organizations offer high structural stability by maximizing peptide-peptide association and optimizing peptide-water solvation. Moreover, curved surface, compact size, and less populated β-structure in Aβ globulomers make them difficult to convert into other high-order Aβ aggregates and fibrils with dominant β-structure, suggesting that they are likely to be off-pathway species to amyloid fibrils. These Aβ globulomers are compatible with experimental data in overall size, subunit organization, and molecular weight from AFM images and H/D amide exchange NMR.Our computationally modeled Aβ globulomers provide useful insights into structure, dynamics, and polymorphic nature of Aβ globulomers which are completely different from Aβ fibrils, suggesting that these globulomers are likely off-pathway species and explaining the independence of the aggregation kinetics between Aβ globulomers and fibrils

    The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group

    Get PDF
    The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC

    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    Meat Intake and the Dose of Vitamin B3 - Nicotinamide:Cause of the Causes of Disease Transitions, Health Divides, and Health Futures?

    Get PDF
    Meat and vitamin B 3 – nicotinamide – intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by ‘welcoming’ gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B 3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive ‘meat transitions’. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic ‘old friends’ compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B 3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress
    • …
    corecore