454 research outputs found

    Radial flow has little effect on clusterization at intermediate energies in the framework of the Lattice Gas Model

    Full text link
    The Lattice Gas Model was extended to incorporate the effect of radial flow. Contrary to popular belief, radial flow has little effect on the clusterization process in intermediate energy heavy-ion collisions except adding an ordered motion to the particles in the fragmentation source. We compared the results from the lattice gas model with and without radial flow to experimental data. We found that charge yields from central collisions are not significantly affected by inclusion of any reasonable radial flow.Comment: 8 pages, 2 figures, submitted to PRC; Minor update and resubmitted to PR

    Cavitation and bubble collapse in hot asymmetric nuclear matter

    Full text link
    The dynamics of embryonic bubbles in overheated, viscous and non-Markovian nuclear matter is studied. It is shown that the memory and the Fermi surface distortions significantly affect the hinderance of bubble collapse and determine a characteristic oscillations of the bubble radius. These oscillations occur due to the additional elastic force induced by the memory integral.Comment: Revtex file (10 pages) and 3 figure

    Thermal Hadron Production in High Energy Heavy Ion Collisions

    Full text link
    We provide a method to test if hadrons produced in high energy heavy ion collisions were emitted at freeze-out from an equilibrium hadron gas. Our considerations are based on an ideal gas at fixed temperature TfT_f, baryon number density nBn_B, and vanishing total strangeness. The constituents of this gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay according to the experimentally observed branching ratios. The ratios of the various resulting hadron production rates are tabulated as functions of TfT_f and nBn_B. These tables can be used for the equilibration analysis of any heavy ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92 and Bielefeld preprint BI-TP 92/0

    Coulomb Effect: A Possible Probe for the Evolution of Hadronic Matter

    Get PDF
    Electromagnetic field produced in high-energy heavy-ion collisions contains much useful information, because the field can be directly related to the motion of the matter in the whole stage of the reaction. One can divide the total electromagnetic field into three parts, i.e., the contributions from the incident nuclei, non-participating nucleons and charged fluid, the latter consisting of strongly interacting hadrons or quarks. Parametrizing the space-time evolution of the charged fluid based on hydrodynamic model, we study the development of the electromagnetic field which accompanies the high-energy heavy-ion collisions. We found that the incident nuclei bring a rather strong electromagnetic field to the interaction region of hadrons or quarks over a few fm after the collision. On the other hand, the observed charged hadrons' spectra are mostly affected (Coulomb effect) by the field of the charged fluid. We compare the result of our model with experimental data and found that the model reproduces them well. The pion yield ratio pi^-/pi+ at a RHIC energy, Au+Au 100+100 GeV/nucleon, is also predicted.Comment: 23 pages, RevTex, 19 eps figures, revised versio

    Unlike particle correlations and the strange quark matter distillation process

    Get PDF
    We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model.Comment: 15 pages, 2 figures, 1 tabl

    Resonance Model of πΔYK\pi \Delta \rightarrow Y K for Kaon Production in Heavy Ion Collisions

    Full text link
    The elementary production cross sections πΔYK\pi \Delta \rightarrow Y K (Y=Σ,Λ)(Y=\Sigma,\,\, \Lambda) and πNYK\pi N \rightarrow Y K are needed to describe kaon production in heavy ion collisions. The πNYK\pi N \rightarrow Y K reactions were studied previously by a resonance model. The model can explain the experimental data quite well \cite{tsu}. In this article, the total cross sections πΔYK\pi \Delta \rightarrow Y K at intermediate energies (from the kaon production threshold to3 GeV of πΔ\pi \Delta center-of-mass energy) are calculated for the first time using the same resonance model. The resonances, N(1710)I(JP)=12(12+)N(1710)\,I(J^P) = \frac{1}{2}(\frac{1}{2}^+) and N(1720)12(32+)N(1720)\, \frac{1}{2} (\frac{3}{2}^+) for the πΔΣK\pi \Delta \rightarrow \Sigma K reactions, and N(1650)12(12)N(1650)\, \frac{1}{2} (\frac{1}{2}^-), N(1710)12(12+)N(1710)\, \frac{1}{2} (\frac{1}{2}^+) and N(1720)12(32+)N(1720)\, \frac{1}{2} (\frac{3}{2}^+) for the πΔΛK\pi \Delta \rightarrow \Lambda K reactions are taken into account coherently as the intermediate states in the calculations. Also t-channel K(892)12(1)K^*(892) \frac{1}{2}(1^-) vector meson exchange is included. The results show that K(892)K^*(892) exchange is neglegible for the πΔΣK\pi \Delta \rightarrow \Sigma K reactions, whereas this meson does not contribute to the πΔΛK\pi \Delta \rightarrow \Lambda K reactions. Furthemore, the πΔYK\pi \Delta \rightarrow Y K contributions to kaon production in heavy ion collisions are not only non-neglegible but also very different from the πNYK\pi N \rightarrow Y K reactions. An argument valid for πNYK\pi N \rightarrow Y K cannot be extended to πΔYK\pi \Delta \rightarrow Y K reactions. Therefore, cross sections for πΔYK\pi \Delta \rightarrow Y K including correctly the different isospins must beComment: ( Replaced with corrections of printing errors in the Table. ) 15 pages, Latex file with 4 figures, 1 figure is included in the text. A compressed uuencode file for 3 figures is appended. (A figure file format was changed.) Also available upon reques

    Tetrazine- and trans-cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation

    No full text
    The inverse electron demand Diets-Alder (IEDDA) reaction-initiated ligation between 1,2,4,5-tetra-zines (Tz) and trans-cyclooctenes (TCO) is one of the fastest bioorthogonal reactions known today and is therefore increasingly used for in vivo click chemistry. Described herein is the synthesis of Tz- and TCO-functionalised polypeptides, polypeptoids and polypeptide-block-polypeptoids (polypept(o) ides) by ring-opening polymerisation of the corresponding N-carboxyanhydrides using Tz- or TCO-functional amine initiators. Despite the reactivity of tetrazines, polymers with low dispersity and high end group integrity can be obtained as observed by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Amphiphilic Tz-functionalised block copolypept(o)ides were used to prepare polymeric micelles and organic colloids by miniemulsion techniques, which may find an application as clearing agents in pretargeted nuclear imaging and therapy using efficient in vivo click chemistry. The reaction kinetics of the tetrazine ligation using the synthesised polymers and the accessibility of the Tz groups on the polymeric nanoparticles were evaluated using UV Vis and fluorescence correlation spectroscopy (FCS), and second-order rate constants were determined by stopped-flow spectrophotometry ensuring quantitative conversions in seconds at sub-millimolar concentrations (10-30 s).Drug Delivery Technolog

    Bose-Einstein Correlations of Pion Wavepackets

    Get PDF
    A wavepacket model for a system of free pions, which takes into account the full permutation symmetry of the wavefunction and which is suitable for any phase space parametrization is developed. The properties of the resulting mixed ensembles and the two-particle correlation function are discussed. A physical interpretation of the chaoticity lambda as localizat of the pions in the source is presented. Two techniques to generate test-particles, which satisfy the probability densities of the wavepacket state, are studied: 1. A Monte Carlo procedure in momentum space based on the standard Metropolis technique. 2. A molecular dynamic procedure using Bohm's quantum theory of motion. In order to reduce the numerical complexity, the separation of the wavefunction into momentum space clusters is discussed. In this context th influence of an unauthorized factorization of the state, i. e. the omissio of interference terms, is investigated. It is shown that the correlation radius remains almost uneffected, but the chaoticity parameter decreases substantially. A similar effect is observed in systems with high multiplic where the omission of higher order corrections in the analysis of two-part correlations causes a reduction of the chaoticity and the radius. The approximative treatment of the Coulomb interaction between pions and source is investigated. The results suggest that Coulomb effects on the co radii are not symmetric for pion pairs of different charges. For negative the radius, integrated over the whole momentum spectrum, increases substan while for positive pions the radius remains almost unchanged.Comment: 15 pages, 8 figures, 0.8 Mb, uses ljour2-macro, Submitted to Z. Phys. A (1997
    corecore