183 research outputs found

    A modeling approach of the relationship between nitrous oxide fluxes from soils and the water-filled pore space

    Get PDF
    International audienceNitrous oxide (N2O) fluxes can increase significantly following small increases in soil water-filled pore space (WFPS). Thus, it is essential to improve our knowledge of this crucial relationship to better model N2O emissions by soils. We studied how much the addition of a gas transport and a gas–liquid equilibrium module to the model of N2O emissions NOE could improve simulation results. A sensitivity analysis of the modified model (NOEGTE: gas transport and equilibrium) was first performed, and then the model was tested with published data of a wetting–drying experiment. Simulated N2O fluxes plotted against WFPS appeared to be bell-shaped during the 7 days simulated, combining the effects of the low N2O production for WFPS 0.95. The WFPS generating the maximum simulated N2O fluxes shifted with time, from 0.76 after 12 h, to 0.79 after 168 h, because of an increase over time of the gas concentration gradient between the soil surface and the atmosphere. NOEGTE appeared able to capture the pattern of N2O emissions monitored in the experimental data. In particular, N2O peaks during drying were well reproduced in terms of timing, but their magnitudes were often overestimated. They were attributed to the increasing gas diffusivity and N2O exchanges from the liquid phase to the gaseous phase

    Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model

    Get PDF
    Nitrous oxide (N2O) is the main biogenic greenhouse gas contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate therefore requires a capacity to predict N2O emissions in relation to environmental conditions and crop management. Biophysical models simulating the dynamics of carbon and nitrogen in agro-ecosystems have a unique potential to explore these relationships, but are fraught with high uncertainties in their parameters due to their variations over time and space. Here, we used a Bayesian approach to calibrate the parameters of the N2O submodel of the agro-ecosystem model CERES-EGC. The submodel simulates N2O emissions from the nitrification and denitrification processes, which are modelled as the product of a potential rate with three dimensionless factors related to soil water content, nitrogen content and temperature. These equations involve a total set of 15 parameters, four of which are site-specific and should be measured on site, while the other 11 are considered global, i.e. invariant over time and space. We first gathered prior information on the model parameters based on the literature review, and assigned them uniform probability distributions. A Bayesian method based on the Metropolis–Hastings algorithm was subsequently developed to update the parameter distributions against a database of seven different field-sites in France. Three parallel Markov chains were run to ensure a convergence of the algorithm. This site-specific calibration significantly reduced the spread in parameter distribution, and the uncertainty in the N2O simulations. The model’s root mean square error (RMSE) was also abated by 73% across the field sites compared to the prior parameterization. The Bayesian calibration was subsequently applied simultaneously to all data sets, to obtain better global estimates for the parameters initially deemed universal. This made it possible to reduce the RMSE by 33% on average, compared to the uncalibrated model. These global parameter values may be used to obtain more realistic estimates of N2O emissions from arable soils at regional or continental scales

    A rare early-type star revealed in the Wing of the Small Magellanic Cloud

    Full text link
    Sk 183 is the visually-brightest star in the N90 nebula, a young star-forming region in the Wing of the Small Magellanic Cloud (SMC). We present new optical spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the basis of its nitrogen spectrum, the star also displays broadened He I absorption which suggests a later type. We propose that Sk 183 has a composite spectrum and that it is similar to another star in the SMC, MPG 324. This brings the number of rare O2- and O3-type stars known in the whole of the SMC to a mere four. We estimate physical parameters for Sk 183 from analysis of its spectrum. For a single-star model, we estimate an effective temperature of 46+/-2 kK, a low mass-loss rate of ~10^-7 Msun yr^-1, and a spectroscopic mass of 46^+9_-8 Msun (for an adopted distance modulus of 18.7 mag to the young population in the SMC Wing). An illustrative binary model requires a slightly hotter temperature (~47.5 kK) for the primary component. In either scenario, Sk 183 is the earliest-type star known in N90 and will therefore be the dominant source of hydrogen-ionising photons. This suggests Sk 183 is the primary influence on the star formation along the inner edge of the nebula.Comment: Accepted by ApJ, 10 pages, 7 figures, v2 after proof

    The VLT-FLAMES Tarantula Survey. VII. A low velocity dispersion for the young massive cluster R136

    Get PDF
    Detailed studies of resolved young massive star clusters are necessary to determine their dynamical state and evaluate the importance of gas expulsion and early cluster evolution. In an effort to gain insight into the dynamical state of the young massive cluster R136 and obtain the first measurement of its velocity dispersion, we analyse multi-epoch spectroscopic data of the inner regions of 30 Doradus in the Large Magellanic Cloud (LMC) obtained as part of the VLT-FLAMES Tarantula Survey. Following a quantitative assessment of the variability, we use the radial velocities of non-variable sources to place an upper limit of 6 km/s on the line-of-sight velocity dispersion of stars within a projected distance of 5 pc from the centre of the cluster. After accounting for the contributions of undetected binaries and measurement errors through Monte Carlo simulations, we conclude that the true velocity dispersion is likely between 4 and 5 km/s given a range of standard assumptions about the binary distribution. This result is consistent with what is expected if the cluster is in virial equilibrium, suggesting that gas expulsion has not altered its dynamics. We find that the velocity dispersion would be ~25 km/s if binaries were not identified and rejected, confirming the importance of the multi-epoch strategy and the risk of interpreting velocity dispersion measurements of unresolved extragalactic young massive clusters.Comment: 18 pages, 7 figures, accepted by A&

    The VLT-FLAMES Tarantula Survey XXI. Stellar spin rates of O-type spectroscopic binaries

    Full text link
    The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (\vrot) for components of 114 spectroscopic binaries in 30 Doradus. The \vrot\ values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. \vrot\ calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall \vrot\ distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at \vrot < 200 kms) and a shoulder at intermediate velocities (200 < \vrot < 300 kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at \vrot \sim100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the \vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.Comment: 16 pages, 16 figures, paper accepted in Astronomy & Astrophysic

    Studying the kinematics of the giant star-forming region 30 Doradus. I. The data

    Get PDF
    We present high-quality VLT-FLAMES optical spectroscopy of the nebular gas in the giant star-forming region 30 Doradus. In this paper, the first of a series, we introduce our observations and discuss the main kinematic features of 30 Dor, as revealed by the spectroscopy of the ionized gas in the region. The primary data set consists of regular grid of nebular observations, which we used to produce a spectroscopic datacube of 30 Dor, centered on the massive star cluster R136 and covering a field-of-view of 10'x10'. The main emission lines present in the datacube are from Halpha and [NII]6548,6584. The Halpha emission-line profile varies across the region from simple single-peaked emission to complex, multiple-component profiles, suggesting that different physical mechanisms are acting on the excited gas. To analyse the gas kinematics we fit Gaussian profiles to the observed Halpha features. Unexpectedly, the narrowest Halpha profile in our sample lies close to the supernova remnant 30 Dor B. We present maps of the velocity field and velocity dispersion across 30 Dor, finding five previously unclassified expanding structures. These maps highlight the kinematic richness of 30 Dor (e.g. supersonic motions), which will be analysed in future papers.Comment: 24 pages, 12 figures. Accepted for publication in Astronomy and Astrophysic

    The VLT-FLAMES Tarantula Survey XVII. Physical and wind properties of massive stars at the top of the main sequence

    Get PDF
    The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant Hii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O to denser WNh star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O and optically thick WNh star winds. Our results suggest the existence of a kink between both mass-loss regimes, in agreement with recent MC simulations. For the optically thick regime, we confirm the steep dependence on the Eddington factor from previous theoretical and observational studies. The transition occurs on the MS near a luminosity of 10^6.1Lsun, or a mass of 80...90Msun. Above this limit, we find that - even when accounting for moderate wind clumping (with f = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and shaping their environments.Comment: Accepted for publication in A&A, 19 pages, 14 figures, 6 tables, (74 pages appendix, 68 figures, 4 tables

    Ion irradiation triggers the formation of the precursors of complex organics in space - The case of formaldehyde and acetaldehyde

    Get PDF
    Context. Cosmic rays and solar energetic particles induce changes in the composition of compounds frozen onto dust grains in the interstellar medium (ISM), in comets, and on the surfaces of atmosphere-less small bodies in the outer Solar System. This induces the destruction of pristine compounds and triggers the formation of various species, including the precursors of complex organics. Aims. We investigate the role of energetic ions in the formation of formaldehyde (H2CO) and acetaldehyde (CH3CHO), which are observed in the ISM and in comets, and which are thought to be the precursors of more complex compounds such as hexamethylenete-tramine (HMT), which is found in carbonaceous chondrites and in laboratory samples produced after the irradiation and warm-up of astrophysical ices. Methods. We performed ion irradiation of water, methanol, and ammonia mixtures at 14–18 K. We bombarded frozen films with 40–200 keV H+ that simulate solar energetic particles and low-energy cosmic rays. Samples were analysed by infrared transmission spectroscopy. Results. Among other molecules, we observe the formation of H2CO and CH3CHO, and we find that their abundance depends on the dose and on the stoichiometry of the mixtures. We find that the H2CO abundance reaches the highest value after a dose of 10 eV/16u and then it decreases as the dose increases. Conclusions. The data suggest that surfaces exposed to high doses are depleted in H2CO. This explains why the amount of HMT in organic residues and that formed after irradiation of ices depends on the dose deposited in the ice. Because the H2CO abundance decreases at doses higher than 10 eV/16u, a lower quantity of H2CO is available to form HMT during the subsequent warm-up. The H2CO abundances caused by ion bombardment are insufficient to explain the ISM abundances, but ion bombardment can account for the abundance of CH3CHO towards the ISM and comets

    The VLT-FLAMES Tarantula Survey XIX. B-type Supergiants - Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence

    Get PDF
    TLUSTY non-LTE model atmosphere calculations have been used to determine atmospheric parameters and nitrogen (N) abundances for 34 single and 18 binary B-type supergiants (BSGs). The effects of flux contribution from an unseen secondary were considered for the binary sample. We present the first systematic study of the incidence of binarity for a sample of BSGs across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the BSGs it may be necessary to extend the TAMS to lower temperatures. This is consistent with the derived distribution of mass discrepancies, projected rotational velocities (vsini) and N abundances, provided that stars cooler than this temperature are post RSG objects. For the BSGs in the Tarantula and previous FLAMES surveys, most have small vsini. About 10% have larger vsini (>100 km/s) but surprisingly these show little or no N enhancement. All the cooler BSGs have low vsini of <70km/s and high N abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. A lack of cool binaries, possibly reflects the small sample size. Single star evolutionary models, which include rotation, can account for the N enhancement in both the single and binary samples. The detailed distribution of N abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history. The first comparative study of single and binary BSGs has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff=20000K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolution of BSGs. Full abstract in paperComment: 21 pages, 15 figures, 11 table

    Investigation on the role of red fox in tuberculosis maintenance community Âż second opus: experimental infection with a virulent field Mycobacterium bovis strain

    Get PDF
    Trabajo presentado al: 69th Wildlife Disease Association and 14th European Wildlife Disease Association Conference. Cuenca, Spain. p. 135. 31 agosto-2 septiembre
    • …
    corecore