19 research outputs found

    Meson-meson scattering in the massive Schwinger model: a status report

    Get PDF
    We discuss the possibility of extracting phase shifts from finite volume energies for meson-meson scattering, where the mesons are fermion-antifermion bound states of the massive Schwinger model with SU(2) flavour symmetry. The existence of analytical strong coupling predictions for the mass spectrum and for the scattering phases makes it possible to test the reliability of numerical results

    Temporal team semantics revisited

    Get PDF
    In this paper, we study a novel approach to asynchronous hyperproperties by reconsidering the foundations of temporal team semantics. We consider three logics: , and , which are obtained by adding quantification over so-called time evaluation functions controlling the asynchronous progress of traces. We then relate synchronous to our new logics and show how it can be embedded into them. We show that the model checking problem for with Boolean disjunctions is highly undecidable by encoding recurrent computations of non-deterministic 2-counter machines. Finally, we present a translation from to Alternating Asynchronous Büchi Automata and obtain decidability results for the path checking problem as well as restricted variants of the model checking and satisfiability problems

    Mass spectrum and elastic scattering in the massive SU(2)_f Schwinger model on the lattice

    Get PDF
    We calculate numerically scattering phases for elastic meson-meson scattering processes in the strongly coupled massive Schwinger-model with an SU(2) flavour symmetry. These calculations are based on Luescher's method in which finite size effects in two-particle energies are exploited. The results from Monte-Carlo simulations with staggered fermions for the lightest meson ("pion") are in good agreement with the analytical strong-coupling prediction. Furthermore, the mass spectrum of low-lying mesonic states is investigated numerically. We find a surprisingly rich spectrum in the mass region [m_\pi,4 m_\pi].Comment: 43 pages, 15 figures, LaTeX, uses feynmf.st

    Interaction effects in the spectrum of the three-dimensional Ising model

    Full text link
    The two-point correlation functions of statistical models show in general both poles and cuts in momentum space. The former correspond to the spectrum of massive excitations of the model, while the latter originate from interaction effects, namely creation and annihilation of virtual pairs of excitations. We discuss the effect of such interactions on the long distance behavior of correlation functions in configuration space, focusing on certain time-slice operators which are commonly used to extract the spectrum. For the 3D Ising model in the scaling region of the broken-symmetry phase, a one-loop calculation shows that the interaction effects on time-slice correlations is non negligible for distances up to a few times the correlation length, and should therefore be taken into account when analysing Monte Carlo data.Comment: 10 pages, LaTeX file + 1 ps figure, uses axodraw.st

    Five-loop renormalization-group expansions for the three-dimensional n-vector cubic model and critical exponents for impure Ising systems

    Full text link
    The renormalization-group (RG) functions for the three-dimensional n-vector cubic model are calculated in the five-loop approximation. High-precision numerical estimates for the asymptotic critical exponents of the three-dimensional impure Ising systems are extracted from the five-loop RG series by means of the Pade-Borel-Leroy resummation under n = 0. These exponents are found to be: \gamma = 1.325 +/- 0.003, \eta = 0.025 +/- 0.01, \nu = 0.671 +/- 0.005, \alpha = - 0.0125 +/- 0.008, \beta = 0.344 +/- 0.006. For the correction-to-scaling exponent, the less accurate estimate \omega = 0.32 +/- 0.06 is obtained.Comment: 11 pages, LaTeX, no figures, published versio

    Three-loop critical exponents, amplitude functions, and amplitude ratios from variational perturbation theory

    Full text link
    We use variational perturbation theory to calculate various universal amplitude ratios above and below T_c in minimally subtracted phi^4-theory with N components in three dimensions. In order to best exhibit the method as a powerful alternative to Borel resummation techniques, we consider only to two- and three-loops expressions where our results are analytic expressions. For the critical exponents, we also extend existing analytic expressions for two loops to three loops.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/kleiner_re318/preprint.htm

    25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple cubic lattice

    Full text link
    25th-order high-temperature series are computed for a general nearest-neighbor three-dimensional Ising model with arbitrary potential on the simple cubic lattice. In particular, we consider three improved potentials characterized by suppressed leading scaling corrections. Critical exponents are extracted from high-temperature series specialized to improved potentials, obtaining γ=1.2373(2)\gamma=1.2373(2), ν=0.63012(16)\nu=0.63012(16), α=0.1096(5)\alpha=0.1096(5), η=0.03639(15)\eta=0.03639(15), β=0.32653(10)\beta=0.32653(10), δ=4.7893(8)\delta=4.7893(8). Moreover, biased analyses of the 25th-order series of the standard Ising model provide the estimate Δ=0.52(3)\Delta=0.52(3) for the exponent associated with the leading scaling corrections. By the same technique, we study the small-magnetization expansion of the Helmholtz free energy. The results are then applied to the construction of parametric representations of the critical equation of state, using a systematic approach based on a global stationarity condition. Accurate estimates of several universal amplitude ratios are also presented.Comment: 40 pages, 15 figure

    Extension to order β23\beta^{23} of the high-temperature expansions for the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices

    Get PDF
    Using a renormalized linked-cluster-expansion method, we have extended to order β23\beta^{23} the high-temperature series for the susceptibility χ\chi and the second-moment correlation length ξ\xi of the spin-1/2 Ising models on the sc and the bcc lattices. A study of these expansions yields updated direct estimates of universal parameters, such as exponents and amplitude ratios, which characterize the critical behavior of χ\chi and ξ\xi. Our best estimates for the inverse critical temperatures are βcsc=0.221654(1)\beta^{sc}_c=0.221654(1) and βcbcc=0.1573725(6)\beta^{bcc}_c=0.1573725(6). For the susceptibility exponent we get γ=1.2375(6)\gamma=1.2375(6) and for the correlation length exponent we get ν=0.6302(4)\nu=0.6302(4). The ratio of the critical amplitudes of χ\chi above and below the critical temperature is estimated to be C+/C=4.762(8)C_+/C_-=4.762(8). The analogous ratio for ξ\xi is estimated to be f+/f=1.963(8)f_+/f_-=1.963(8). For the correction-to-scaling amplitude ratio we obtain aξ+/aχ+=0.87(6)a^+_{\xi}/a^+_{\chi}=0.87(6).Comment: Misprints corrected, 8 pages, latex, no figure

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: γ=1.2371(4)\gamma=1.2371(4), ν=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), β=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update
    corecore