
This is a repository copy of Temporal team semantics revisited.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191422/

Version: Published Version

Proceedings Paper:
Gutsfeld, J.O., Meier, A., Ohrem, C. et al. (1 more author) (2022) Temporal team
semantics revisited. In: LICS '22: Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS '22: 37th Annual ACM/IEEE Symposium on Logic in
Computer Science, 02-05 Aug 2022, Haifa Israel. Association for Computing Machinery .
ISBN 9781450393515

https://doi.org/10.1145/3531130.3533360

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Temporal Team Semantics Revisited

Jens Oliver Gutsfeld
Christoph Ohrem

jens.gutsfeld@uni-muenster.de
christoph.ohrem@uni-muenster.de
Institut für Informatik, Westfälische

Wilhelms-Universität Münster
Münster, Germany

Arne Meier
meier@thi.uni-hannover.de

Institut für Theoretische Informatik,
Leibniz Universität Hannover

Hannover, Germany

Jonni Virtema
j.t.virtema@sheffield.ac.uk

Department of Computer Science,
University of Sheffield

Sheffield, United Kingdom

ABSTRACT

In this paper, we study a novel approach to asynchronous hy-

perproperties by reconsidering the foundations of temporal team

semantics. We consider three logics: TeamLTL, TeamCTL and

TeamCTL∗, which are obtained by adding quantification over

so-called time evaluation functions controlling the asynchronous

progress of traces.We then relate synchronous TeamLTL to our new

logics and show how it can be embedded into them. We show that

the model checking problem for ∃TeamCTL with Boolean disjunc-

tions is highly undecidable by encoding recurrent computations of

non-deterministic 2-counter machines. Finally, we present a transla-

tion from TeamCTL∗ to Alternating Asynchronous Büchi Automata

and obtain decidability results for the path checking problem as

well as restricted variants of the model checking and satisfiability

problems.

CCS CONCEPTS

·Theory of computation→Modal and temporal logics;Prob-

lems, reductions and completeness; Logic and verification.

KEYWORDS

Team Semantics, Temporal Logic, Hyperproperties, Automata The-

ory, Model Checking, Asynchronicity

ACM Reference Format:

Jens Oliver Gutsfeld, Christoph Ohrem, ArneMeier, and Jonni Virtema. 2022.

Temporal Team Semantics Revisited. In 37th Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS) (LICS ’22), August 2ś5, 2022, Be’er Sheva,

Israel. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3531130.

3533360

1 INTRODUCTION

Since the 1980s, model checking has become a staple in verification.

For Linear Temporal Logic (LTL) and its progeny, the model check-

ing problem asks whether every trace of a given system fulfils a

given temporal specification such as a liveness or fairness property.

Notably, this specification considers the traces of the input in isola-

tion and cannot relate different traces to each other. However, it is

This work is licensed under a Creative Commons Attribution International
4.0 License.

LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9351-5/22/08.
https://doi.org/10.1145/3531130.3533360

not hard to come upwith natural properties that require viewing dif-

ferent traces in tandem. For example, asking whether the value of a

variable x on average exceeds some constant c amounts to summing

up the value of x for all traces and then averaging the result. In this

context, the information given by a single trace viewed in isolation

is of little avail. Likewise, it does not suffice to consider properties of

isolated traces, whenwe consider executions of parallel programs in

which individual threads are represented by single traces. The same

is true for information-flow properties of systems like observational

determinism or generalised non-interference. This need to be able

to specify properties of collections of traces has lead to the intro-

duction of the notion of a hyperproperty [10]. Technically, a trace

property is just a set of traces, and vice versa. Hyperproperties on

the other hand describe properties of sets of traces, and thus corre-

spond to sets of sets of traces. Since established temporal logics like

LTL can express only trace properties, but not genuine hyperprop-

erties, new logics were developed for hyperproperties. Generally,

the approach has been to pick a temporal logic defined on traces

and lift it to sets of traces by adding quantification over named

paths, For example, LTL becomes HyperLTL [9], QPTL becomes

HyperQPTL [31], PDL-∆ becomes HyperPDL-∆ [19] and so on.

A promising alternative approach for lifting temporal logics to

hyperproperties is to shift to the so-called team semantics. In the

past decade, team logics have established themselves as a vibrant

area of research [1, 17]. The term team semantics was coined by

Väänänen [32], inspired by the earlier work of Hodges [23]. The

idea behind all logics utilising team semantics is to evaluate formu-

lae, not over single states of affairs such as assignments or traces,

but over sets of such states of affairs (i.e., over teams). Soon after

its origin, team semantics was already applied to first-order, propo-

sitional, and modal settings. At the heart of these logics lies the

ability to enrich the logical language with novel atomic formulae

for stating properties of teams. The most prominent of these atoms

is the dependence atom dep(x̄ , ȳ) stating that the variables x̄ func-

tionally determine the values of ȳ with respect to some given team

(a set of assignments). Another important atom is the inclusion

atom x̄ ⊆ ȳ expressing the inclusion dependency that all the values

that occur for x̄ in a given team, also occur as a value for ȳ. Team

Logics implement concepts and formalisms from a wealth of differ-

ent disciplines such as statistics and database theory [17]. While

the bulk of the research has concerned itself on logics expressing

qualitative properties of data, recent discoveries in multiset [16]

and probabilistic [21, 22] variants of team semantics have shifted

the focus to the quantitative setting.

Recently, Krebs et al. [26] made an important advancement to

the field by introducing the first team based temporal logics for

LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel Jens Oliver Gutsfeld, Christoph Ohrem, Arne Meier, and Jonni Virtema

hyperproperties. The logic TeamLTL does not add quantifiers or

names to LTL, but instead achieves the lifting to hyperproperties

by adapting team semantics, i.e., by evaluating formulae directly

over sets of traces and adding new atomic statements that can be

used to express hyperproperties such as non-inference directly. Like

LTL, but unlike HyperLTL and related logics, TeamLTL retains the

property of being a purely combinatory, quantifier-free logic. It can

also express specifications for which no analogue in HyperLTL is

available. Most works on the named quantifier approach and the

team semantics approach concentrate on synchronous interactions

between traces. In 2018, Krebs et al. [26] introduced two different

semantics for TeamLTL: a synchronous one and an asynchronous

one. They can be seen as polar opposites: in the first, computations

progress in lock step, and in the second, there is no way of relating

the passage of time between distinct traces. This asynchronous

semantics is rather weak and cannot deal with the plethora of ways

asynchronicity occurs in real-world systems. For example, in or-

der to capture multithreaded environments in which processes are

not scheduled lockstepwise but still have some rules governing

the computation, a setting that can model different modes of ayn-

chronicity is required. The ubiquity of asynchronicity thus calls

for the development of new hyperlogics that can express asynchro-

nous specifications. In 2021, Gutsfeld et al. [20] conducted the first

systematic study of asynchronous hyperproperties and introduced

both a temporal fix-point calculus, Hµ , and an automata-theoretic

framework, Alternating Asynchronous Parity Automata (AAPA),

to tackle this class of properties.

Our contribution. In this paper, we present a new approach to

TeamLTL by using explicit quantification over time evaluation

functions (tefs for short) that describe the asynchronous inter-

leavings of traces. This allows for the fine-grained use of asyn-

chronicity in TeamLTL specifications. Using the new approach,

we reconstruct the semantics of TeamLTL from scratch, thereby

also defining novel team semantics variants of CTL and CTL∗ (i.e.,

TeamCTL and TeamCTL∗). As an example (see Sections 3.2 and

3.3 for the precise semantics), let o1, . . . ,on be observable out-

puts, c1, c2 be confidential outputs, and s be a secret. The for-

mula φ ≔ G∀(o1, . . . ,on , s) ⊆ (o1, . . . ,on ,¬s) expresses a form

of non-inference by stating that independent of the asynchronous

behaviour of the system, the observer cannot infer the current value

of the secret from the outputs. The formula ψ ≔ G∃dep(c1, c2, s)

expresses that for some asynchronous behaviour of the system,

the confidential outputs functionally determine the secret. Finally,

the formulaψ ∨ φ states that the executions of the system can be

decomposed into two parts; in the first part, the aforementioned

dependence holds, while in the second part, the non-inference prop-

erty holds.

We wish to emphasise that we are not redefining asynchronous

TeamLTL (or synchronous TeamLTL for that matter). Our goal is

to define semantics for TeamLTL that is versatile enough to deal

with the plethora of different modes of asynchronicity that occur in

real-world applications. We propose a formalism that can express

both synchronous and asynchronous behaviour. Indeed, we show

that synchronous TeamLTL can be embedded into our new logics.

Asynchronous TeamLTL (as defined by Krebs et al. [26]) cannot be

directly embedded into our new setting, for each time evaluation

function describes a dependence between the global clock and the

local clocks. In asynchronous TeamLTL, no such dependence exists

and the setting resembles somewhat our TeamCTL, albeit with

modified semantics.

Besides quantified tefs and LTL constructs, we also study several

extensions of TeamLTL with different atoms from the team seman-

tics literature, e.g. the dependence and inclusion atoms mentioned

above. We establish that our logics provide a unifying framework

in which previous temporal logics with team semantics can be

embedded in an intuitive and efficient manner. We show that the

model checking problem is highly undecidable already for the ex-

tension of ∃TeamCTL with the Boolean disjunction. However, we

also present a translation from TeamCTL∗ to Alternating Asyn-

chronous Büchi Automata (AABA), a subset of AAPA with a Büchi

condition, over finite teams of fixed size. This translation allows us

to transfer restricted interleaving semantics for AAPA, such as the k-

synchronous and k-context-bounded semantics of [20], to TeamCTL∗

and employ decidability results for these restricted semantics for the

path checking problem and finite variants of the satisfiability and

model checking problems. This translation is of independent inter-

est because it constitutes the first application of automata-theoretic

methods in the context of team semantics and dependence logic,

and can therefore serve as a cornerstone for further development in

this area. Our complexity results for the model checking problem

are depicted on page 12 in Table 2.

Related work. Hyperlogics that add quantifiers for named paths

have been studied before [4, 6, 9, 14, 15, 19]. These logics are orthog-

onal to ours as they do not involve team semantics. Hyperlogics

with team semantics have been studied in the past as well [24ś

27, 33]. These logics either have purely synchronous semantics or

they do not allow for fine-grained control of the asynchronicity

as do our time evaluation functions and fragments with restricted

asynchronous semantics.

In recent years, several research groups have embarked on a

systematic study on asynchronous hyperproperties [3, 5, 7, 20].

Gutsfeld et al. [20] study asynchronous hyperproperties using the

fix-point calculus Hµ and Alternating Asynchronous Parity Au-

tomata. Other asynchronous variants of HyperLTL have been in-

troduced in [3, 5, 7]. While Bozelli et al. [7] focus on both Hy-

perLTL variants with special modalities referring to stuttering on

paths and contexts describing asynchronous behaviour, Bonakdar-

pour et al. [5] and Baumeister et al. [3] use quantifications over

so-called trajectories which determine the asynchronous interleav-

ing of traces. These trajectories are similar to our tefs, but they are

not studied in the context of team semantics or AABA and no spe-

cific analysis of the properties for them is presented. As we show,

variants of our logics can express properties such as synchronicity

or fairness for tefs and there is no way in sight to do this in the logic

of Baumeister et al. [3]. Coenen et al. [11] compare the expressive

power of different hyperlogics systematically. However, none of

these logics utilise team semantics.

2 PRELIMINARIES

We assume familiarity with complexity theory [28] and make use of

the classes PSPACE, EXPSPACE, and P. Also we deal with different

Temporal Team Semantics Revisited LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel

degrees of undecidability, e.g., Σ01 and Σ
1
1. A thorough introduction

in this regard can be found in the textbook of Pippenger [29].

General Notation. If ®a = (a0, . . . ,an−1) is an n-tuple of elements

and i < n a natural number, we set ®a[i] ≔ ai . For n-tuples ®a, ®b ∈ Nn

(n ∈ N ∪ {ω}), write ®a ≤ ®b whenever ®a[i] ≤ ®b[i], for each i < n;

write ®a < ®b, if additionally ®a , ®b.

Multisets. Intuitively, a multiset is a generalisation of a set that

records the multiplicities of its elements. The collections {a,a,b}

and {a,b} are different multisets, while they are identical when

interpreted as sets. Here, we encode multisets as sets by appending

unique indices to the elements of the multisets.

Let I be some infinite set of indices such as N ∪ Nω . A mul-

tiset is a set A of pairs (i,v), where i ∈ I is an index value and

v is a set element, such that a[0] , b[0] for all distinct a,b ∈ A.

Multisets A and B are the same multisets (written A = B), if there

exists a bijection f : I → I such that B =
{ (

f (a[0]),a[1]
)
�

� a ∈ A
}

.

Using this notation, the collection {a,a,b} can be written, e.g., as

{(1,a), (2,a), (42,b)}. When denoting elements (i,v) of multisets,

we often drop the indices and write simply the set elementv instead

of the pair (i,v). The disjoint union A ⊎ B of multisets A and B is

defined as the set unionA′∪B′, whereA′
=

{ (

(i, 0),v
)
�

� (i,v) ∈ A
}

and B′ =
{ (

(i, 1),v
)
�

� (i,v) ∈ B
}

.

Temporal Logics. Let us start by recalling the syntax of CTL∗,

CTL, and LTL from the literature [8]. We adopt, as is common in

studies on team logics, the convention that formulae are given in

negation normal form. Fix a set AP of atomic propositions. The set of

formulae of CTL∗ (over AP) is generated by the following grammar:

φ F p | ¬p | φ ∨ φ | φ ∧ φ | Xφ | φUφ | φWφ | ∃φ | ∀φ,

where p ∈ AP is a proposition symbol, X, U and W are temporal

operators, and ∃ and ∀ are path quantifiers. CTL is the syntactic

fragment of CTL∗, where each temporal operator directly follows a

path quantifier (and vice versa). In order to simplify the notation,

we write X∀φ, ψU∃φ, etc., instead of ∀Xφ and ∃ψUφ. That is, the

CTL syntax (over AP) is given by the grammar:

φ F p | ¬p | φ ∨ φ | φ ∧ φ | X∃φ | X∀φ |

φU∃φ | φU∀φ | φW∃φ | φW∀φ,

where p ∈ AP. Finally, LTL is the syntactic fragment of CTL∗ with-

out any path quantifiers. The Kripke semantics for CTL∗ is defined

in the usual manner with respect to Kripke structures and traces

generated from them [30]. For an LTL-formula φ, a trace t , and

i ∈ N, we write JφK(t,i) for the truth value of t[i,∞] ⊩ φ using stan-

dard LTL Kripke semantics. Here t[i,∞] is the postfix of t starting

from its ith element. The logical constants ⊤,⊥ and connectives

→,↔ are defined as usual (e.g., ⊥ ≔ p ∧ ¬p), and Fφ ≔ ⊤Uφ and

Gφ ≔ φW⊥.

Kripke Structures. A rooted Kripke structure is a 4-tuple K =

(W ,R,η, r), where W is a finite non-empty set of states, R ⊆

W 2 a left-total relation, η : W → 2AP a labelling function, and

r ∈ W an initial state of W . A path σ through a Kripke struc-

ture K = (W ,R,η, r) is an infinite sequence σ ∈ W ω such that

Property of tef Definition

Monotonicity ∀i ∈ N : τ (i) ≤ τ (i + 1)

Strict Mon. ∀i ∈ N : τ (i) < τ (i + 1)

Stepwiseness ∀i ∈ N : τ (i) ≤ τ (i + 1) ≤ τ (i) + ®1

*Fairness ∀i ∈ N∀t ∈ T ∃j ∈ N : τ (j, t) ≥ i

*Non-Parallelism ∀i ∈ N : i =
∑

t ∈T τ (i, t)

*Synchronicity ∀i ∈ N∀t , t ′ ∈ T : τ (i, t) = τ (i, t ′)

Table 1: Some properties of tefs. * marks optional properties.

Here, we write τ (i) to denote the tuple
(

τ (i, t)
)

t ∈T .

σ [0] = r and (σ [i],σ [i + 1]) ∈ R for every i ≥ 0. The trace

of σ is defined as t(σ) ≔ η(σ [0])η(σ [1]) · · · ∈ (2AP)ω . A Kripke

structure K induces a multiset of traces, defined as Traces(K) =
{ (

σ , t(σ)
)
�

� σ is a path through K
}

.

3 REVISITING TEMPORAL TEAM
SEMANTICS

In this section, we return to the drawing board and reconstruct the

semantics of TeamLTL from scratch. By doing so, we end up also

defining team semantics variants of CTL and CTL∗ (i.e., TeamCTL

and TeamCTL∗). Our starting goal is to consider hyperproperties

in a setting where synchronicity of the passage of time between

distinct computation traces is not presupposed. Instead, we stipulate

a global lapse of time (global clock) and relate the lapse of time

on computation traces (local clocks) to the lapse of time on the

global clock using a concept we call time evaluation functions. Our

approach here is similar to the one of Baumeister et al. [3] and

Bonakdarpour et al. [5], where our time evaluation functions are

called trajectories.

3.1 Time evaluation functions and temporal
teams

Given a (possibly infinite) multiset of traces T , a time evaluation

function (tef for short) forT is a function τ : N×T → N that, given

a trace t ∈ T and a value of the global clock i ∈ N, outputs the value

τ (i, t) of the local clock of trace t at global time i . Needless to say, not

all functions τ : N×T → N satisfy properties that a function should

a priori satisfy in order to be called a time evaluation function. We

refer the reader to Table 1 for a list of tef properties considered in

this paper. Intuitively, a tef is monotonic if the values of the local

clocks only increase; strict monotonicity requires that at least one

local clock advance in every step; stepwiseness refers to local clocks

advancing at most one step each time; fairness implies that no local

clock gets stuck infinitely long; non-parallelism forces exactly one

clock to advance each time step; synchronicity means that all clocks

advance in lockstep.

In the current paper, we are designing logics for hyperproperties

of discrete linear time execution traces. It is thus clear that all tefs

should at least satisfy monotonicity. One design principle of our

setting is to use a global reference clock in addition to the local

clocks of the computations. It is natural to assume that in order

for a local clock to advance, the global clock has to advance as

well. Thus, we stipulate that every tef must satisfy stepwiseness.

LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel Jens Oliver Gutsfeld, Christoph Ohrem, Arne Meier, and Jonni Virtema

Finally, a crucial property that should hold for all logics with team

semantics is that TeamLTL should be a conservative extension

of LTL. That is, on singleton teams, TeamLTL semantics should

coincide with the semantics of standard non-team-based LTL. In

order, for example, for the next operator X to enjoy this invariance

between LTL and TeamLTL, we stipulate strict monotonicity instead

of simple monotonicity as a property for all tefs. We arrive at the

following formal definitions.

Definition 3.1. A function of the type N ×T → N is a stuttering

tef for T if it satisfies monotonicity, a tef for T if it satisfies strict

monotonicity and stepwiseness, and a synchronous tef for T if it

satisfies strict monotonicity, stepwiseness, and synchronicity.

We write τ (i) to denote the tuple
(

τ (i, t)
)

t ∈T . A tef is initial, if

τ (0, t) = 0 for each t ∈ T . If τ is a tef and k ∈ N is a natural number,

then τ [k,∞] is the k-shifted tef defined by putting τ [k,∞](i, t) ≔

τ (i + k, t), for every t ∈ T and i ∈ N.

Definition 3.2. A temporal team is a pair (T ,τ), whereT is a mul-

tiset of traces and τ is a tef for T . A pair (T ,τ) is called a stuttering

temporal team if τ is a stuttering tef for T .

3.2 TeamLTL, TeamCTL, and TeamCTL∗

Let (T ,τ) be a stuttering temporal team. Team semantics for LTL
(i.e., TeamLTL) is defined recursively as follows.

(T , τ) |= p iff ∀t ∈ T : p ∈ t [τ (0, t)]

(T , τ) |= ¬p iff ∀t ∈ T : p < t [τ (0, t)]

(T , τ) |= (φ ∧ψ) iff (T , τ) |= φ and (T , τ) |= ψ

(T , τ) |= (φ ∨ψ) iff ∃T1 ⊎T2 = T : (T1, τ) |= φ and (T2, τ) |= ψ

(T , τ) |= Xφ iff (T , τ [1, ∞]) |= φ

(T , τ) |= [φUψ] iff ∃k ∈ N such that (T , τ [k, ∞]) |= ψ and

∀m : 0 ≤ m < k ⇒ (T , τ [m, ∞]) |= φ

(T , τ) |= [φWψ] iff ∀k ∈ N : (T , τ [k, ∞]) |= φ or

∃m s.t.m ≤ k and (T , τ [m, ∞]) |= ψ

Note that (T ,τ) |= ⊥ iff T = ∅. In the literature, there exist two

variants of team semantics for the split operator ∨: strict and lax se-

mantics. Strict semantics enforces the split to be a partition whereas

lax does not. The first is the more natural version in the multiset

setting which we follow here. In multiset semantics the multiplici-

ties of traces are recorded. Having lax disjunction would blur these

multiplicities. Problems of strict disjunction arise in set semantics,

where multiplicities are not recorded, and thus in set semantics the

lax disjunction is more natural.

If τ is an initial synchronous tef, we obtain the synchronous

team semantics of LTL as defined by Krebs et al. [26].

While any given multiset of traces T induces a unique initial

synchronous tef, the same does not hold for tefs in general. Con-

sequently, two different modes of TeamLTL satisfaction naturally

emerge: existential (a formula is satisfied by some initial tef) and

universal (a formula is satisfied by all initial tefs) satisfaction. In

the special case where a unique initial tef exists, these two modes

naturally coincide.

Given a multiset of traces T and a formula φ ∈ TeamLTL, we

write T |=∃ φ if (T ,τ) |= φ for some initial tef of T . Likewise, we

write T |=∀ φ if (T ,τ) |= φ for all initial tefs of T . Finally, we write

T |=s φ if (T ,τ) |= φ for the unique initial synchronous tef of T .

We sometimes refer to the universal and existential interpreta-

tions of satisfaction by using ∀TeamLTL and ∃TeamLTL, respec-

tively. For referring to the synchronous interpretation, we write

synchronous TeamLTL.
TeamCTL and TeamCTL∗ loan their syntax from CTL and CTL∗,

respectively. However, while the quantifiers ∃ and ∀ refer to path
quantification in CTL and CTL∗, in the team semantics setting the
quantifiers range over tefs. The formal semantics of the quantifiers
are as one would assume:

(T , τ) |= ∃φ iff (T , τ ′) |= φ for some tef τ ′ of T s.t. τ ′(0) = τ (0),

(T , τ) |= ∀φ iff (T , τ ′) |= φ for all tefs τ ′ of T s.t. τ ′(0) = τ (0).

We write ∃TeamCTL and ∀TeamCTL to denote the fragments of

TeamCTL without the modalities {U∀,W∀,X∀} and {U∃,W∃,X∃},

respectively. Likewise, we write ∃TeamCTL∗ and ∀TeamCTL∗ to

denote the fragments of TeamCTL∗ without the quantifier ∀ and

∃, respectively. We extend the notation |=∃ and |=∀ to TeamCTL∗-

formulae as well.

In this paper, we consider the following decision problems

for different combinations of logics L ∈ {TeamLTL,TeamCTL,

TeamCTL∗} and modes of satisfaction |=∗∈ {|=∃, |=∀, |=s }.

Satisfiability: Given an (L, |=∗)-formula φ, is there a multiset

of traces T such that T |=∗ φ?

Model Checking: Given an (L, |=∗)-formula φ and a Kripke

structure K, does Traces(K) |=∗ φ hold?

Path Checking: Given an (L, |=∗)-formula φ and a finite mul-

tiset of ultimately periodic traces T , does T |=∗ φ?

3.3 Extensions of TeamLTL, TeamCTL, and
TeamCTL∗

Team logics can easily be extended by atoms describing prop-

erties of teams. These extensions are a well defined way to de-

lineate the expressivity and complexity of the logics we con-

sider. The most studied of these atoms are dependence atoms

dep(φ1, . . . ,φn ,ψ) and inclusion atoms φ1, . . . ,φn ⊆ ψ1, . . . ,ψn ,

where φ1, . . . ,φn ,ψ ,ψ1, . . . ,ψn are propositional formulae.1 De-

pendence atoms state that the truth value ofψ is functionally deter-

mined by the truth values of all φ1, . . . ,φn . Inclusion atoms state

that each value combination of φ1, . . . ,φn must also occur as a

value combination ofψ1, . . . ,ψn . Their formal semantics is defined

as follows:

(T ,τ) |= dep(φ1, . . . ,φn ,ψ) iff ∀t , t ′ ∈ T :
∧

1≤j≤n

q
φ j

y
(t,τ (0,t)) =

q
φ j

y
(t ′,τ (0,t ′))

implies Jψ K(t,τ (0,t)) = Jψ K(t ′,τ (0,t ′)) ,
(T ,τ) |= φ1, . . . ,φn ⊆ ψ1, . . . ,ψn iff ∀t ∈ T ∃t ′ ∈ T :

∧

1≤j≤n

q
φ j

y
(t,τ (0,t)) =

q
ψj

y
(t ′,τ (0,t ′)) .

1In the team semantics literature atoms whose parameters are propositional variables
are often called (proper) atoms, while extended atoms allow arbitrary formulae without
atoms in their place. In [26] arbitrary LTL-formulae were allowed as parameters. Here
we take a middle ground and restrict parameters of atoms to propositional formulae.
One reason for this restriction is that the combination of extended atoms and time
evaluation functions can have unwanted consequences in the TeamLTL setting.

Temporal Team Semantics Revisited LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel

We also consider other connectives known in the team semantics

literature: Boolean disjunction 6, the non-emptiness atom NE, and

the universal subteam quantifier
1

A, with their semantics defined as:

(T ,τ) |= φ 6ψ iff (T ,τ) |= φ or (T ,τ) |= ψ

(T ,τ) |= NE iff T , ∅

(T ,τ) |=
1

A φ iff ∀t ∈ T : ({t},τ) |= φ

If C is a collection of atoms and connectives, we denote by

TeamLTL(C) the extension of TeamLTL with the atoms and connec-

tives in C. For any atom or connective ◦, we write TeamLTL(C, ◦)

instead of TeamLTL(C ∪ {◦}).

It is known that, in the setting of synchronous TeamLTL, all (all

downward closed, resp.) Boolean properties of teams are expressible

in TeamLTL(6,NE,
1

A) (in TeamLTL(6,
1

A), resp.) [33]. Let B be a set

of n-ary Boolean relations and φ1, . . . ,φn propositional formulae.

We define the semantics of an expression [φ1, . . . ,φn]B as follows:

(T ,τ) |= [φ1, . . . ,φn]B iff

{ (Jφ1K(t,τ (t,0)) , . . . , JφnK(t,τ (t,0))) | t ∈ T } ∈ B.

Expressions of the form [φ1, . . . ,φn]B are called generalised atoms.

If B is downward closed (i.e. S ∈ B whenever S ⊆ R ∈ B), it is a

downward closed generalised atom. Dependence and inclusion atoms

can also be defined as generalised atoms.

The following was proved in the setting of synchronous

TeamLTL. It is, however, easy to check that the same proof works

also in our more general setting.

Theorem 3.3 ([33]). Any generalised atom is expressible in

TeamLTL(6,NE,
1

A) and all downward closed generalised atoms can

be expressed in TeamLTL(6,
1

A).

3.4 Expressing properties of tefs

Here, we show that some of the properties labelled optional in Table

1, namely fairness and synchronicity, are indeed optional properties

in some extensions of TeamLTL in the sense that these properties

become definable in the extensions. Since these properties make

assumptions about the progress of a tef on each trace, we need a

way to track this progress. For this purpose, we introduce a fresh

atomic proposition o that is set on exactly every other position on

every trace. The parity induced by o then ensures that we have

progressed by exactly one time step whenever the valuation flips

from o to ¬o or vice versa.

Expressing the alternation on o. In the context of the model check-

ing problem, ensuring the alternation on o is straightforward. Given

a Kripke structure, create two copies of every state of the structure,

one labelled with o and another not labelled with o. Then, transi-

tions from each o labelled state take to the copy of the target state

not labelled o, and transitions from each state not labelled o take to

the copy of the target state labelled o. In this new structure, every

trace has the property that o holds on exactly every other index.

Moreover, after dropping o, the two structures are indistinguish-

able with respect to their traces. For the satisfiability problem, the

valuation of o is not restricted by any structure. Thus, we construct

a formula that it is unsatisfiable by a set of traces that does not

correctly alternate on o.

Expressing synchronicity. In order to express synchronicity of a

tef, we encode in a formula that o alternates on all traces simultane-

ously. That is, for every step, eithero holds on all traces and¬o holds

in the next step, or vice versa: φsynch ≔ G((o∧X¬o)66(¬o∧Xo)).

Note that this formula is unsatisfiable by a set of traces violating the

alternation property, since all subformulae refer to the whole set

of traces. This formula shows how to encode synchronicity using

the Boolean disjunction 6. We can alter the formula a little to also

show that synchronicity can be expressed without this extension:

φ ′
synch

≔ o∧G((o∧X¬o)∨(¬o∧Xo)). In this formula, we make use

of a split ∨ instead of the Boolean disjunction 6. However, since we

demand that o hold in the first step, the split can only ever be made

true by splitting a set of traces T into T and ∅. Thus, ∨ behaves

like 6 in this formula and can replace the undesired connective. In

Section 4, we make use of this formula to show how synchronous

TeamLTL can be embedded into different fragments of TeamCTL∗.

Expressing fairness. Fairness can be expressed using the univer-

sal subteam quantifier
1

A. Our formula states that for every trace,

the valuation of o flips infinitely often and thus the current tef

never stops making progress on this trace. This is equivalent to the

definition of fairness that requires every index on every trace to be

reached. The formula is: φfair ≔
1

A G((o ∧ F¬o) ∨ (¬o ∧ Fo)). Note

that for this property, we do not need to enforce strict alternation

on o. We only require that the valuation of o alternates after some

finite amount of steps.

Quantifying tefs with expressible properties. The formulae ex-

pressing tef properties can be used to quantify over tefs with these

properties. For example, quantification over fair tefs could be imple-

mented in the following way: if T is a multiset of traces satisfying

alternation for o, we have that (T ,τ) |= ∃(φfair ∧ φ) iff there exists

a fair tef τ ′ such that τ ′(0) = τ (0) and (T ,τ ′) |= φ.

3.5 Basic properties of the logics

TeamLTL is a conservative extension of LTL. The next proposition

follows by a straightforward inductive argument that is almost

identical to the corresponding proof for synchronous TeamLTL

[26]:

Proposition 3.4. For any TeamLTL-formulaφ, trace t , and initial

tef τ for {t}, the following holds: ({t},τ) |= φ iff t ⊩ φ, where ⊩

denotes the standard satisfaction relation of LTL.

Note that in the setting of the above proposition TeamCTL and

TeamCTL∗ both collapse to LTL as well.

Let L be a logic and |=∗∈ {|=∃, |=∀, |=s }. We say that (L, |=∗)

is downward closed if, for every φ ∈ L, T |=∗ φ implies S |=∗ φ

whenever S ⊆ T . Likewise, we say that (L, |=∗) is union closed if, for

every φ ∈ L, T ⊎ S |=∗ φ holds whenever T |=∗ φ and S |=∗ φ hold.

It is known [26] that (TeamLTL, |=s) is not union closed, but

satisfies the downward closure property. We establish in Section

4 that synchronous TeamLTL can be simulated in ∀TeamLTL and

∃TeamLTL. From these results it follows that neither (TeamLTL, |=∃
) nor (TeamLTL, |=∀) is union closed. However, unlike synchronous

TeamLTL, the following example shows that (TeamLTL, |=∃) is not

downward closed.

LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel Jens Oliver Gutsfeld, Christoph Ohrem, Arne Meier, and Jonni Virtema

Example 3.5. Let t = {p}{p}∅ω be a given trace, and define two

teamsT = {(1, t), (2, t)} and S = {(1, t)} that are multisets of traces.

It is easy to check thatT |=∃ XXp, but S ̸ |=∃ XXp. The reason behind

this is that in tefs at least one of its traces advances each step of the

global clock (see Table 1). In team S this would yield leaving the

p-labelled prefix while for T in the first step one trace can advance

and in the next the other one can.

The example above also illustrates that the use of multisets of

traces is essential in our logics; otherwise we would violate locality.

The locality principle dictates that the satisfaction of a formula

with respect to a team should not depend on the truth values of

proposition symbols that do not occur in the formula. For this,

consider a variant of this example with t1 = {p,q} {p} ∅ω , t2 =

{p} {p} ∅ω and T = {t1, t2}. Then, removing q from the traces

would yield the set S = {t2} under non-multiset semantics and thus

change the truth value of XXp as seen in Example 5. This shows

that the use of multiset semantics is vital. The fact that multiset

semantics can be used to retain locality was observed in [13]. The

proof of the following proposition can be found in the extended

version of the paper [18].

Proposition 3.6. (TeamLTL, |=∀) is downward closed.

4 FRAGMENTS OF TeamCTL∗ AND
SYNCHRONOUS TeamLTL

In this section, we examine connections between our new temporal

team logics and the older synchronous TeamLTL.

4.1 Satisfiability of ∃TeamLTL and validity of
∀TeamLTL

It is straightforward to check that the satisfiability problem

of ∃TeamLTL and the validity problem of ∀TeamLTL are, in

fact, equivalent to the corresponding problems of synchronous

TeamLTL. To see this, first note that the synchronous tef for a mul-

tiset of traces is a tef itself. Conversely, for every tef τ for a multiset

of traces T there exists another multiset of traces Tτ whose syn-

chronous tef is indistinguishable from τ from the point of view of

TeamLTL formulae.

Theorem 4.1. Any given TeamLTL-formula is satisfiable in

∃TeamLTL if and only if it is satisfiable in synchronous TeamLTL.

Likewise, a given TeamLTL-formula is valid in ∀TeamLTL if and

only if it is valid in synchronous TeamLTL.

In the following section, we establish that the connection be-

tween synchronous TeamLTL and ∃TeamLTL/∀TeamLTL is more

profound than just a connection between the problems of satisfia-

bility and validity. We show how model checking of extensions of

synchronous TeamLTL can be efficiently embedded into ∃TeamLTL

and ∀TeamLTL. These results imply that the model checking prob-

lem of extensions of ∃TeamLTL and ∀TeamLTL are at least as hard

as the corresponding problem for synchronous TeamLTL. The same

holds for the validity problem of ∃TeamLTL-extensions and for the

satisfiability problem of ∀TeamLTL-extensions. However, we con-

jecture that the latter problems for ∃TeamLTL and ∀TeamLTL are

harder than for synchronous TeamLTL, due to the alternation of

quantification (between multisets of traces and tefs) that is taking

place.

4.2 Simulating synchronous TeamLTL with
fragments of TeamCTL∗

We show how to embed synchronous TeamLTL into extensions

of different subfragments of TeamCTL∗: ∃TeamLTL, ∀TeamLTL,

∃TeamCTL and∀TeamCTL. This is done by using and expanding on

the idea from Subsection 3.4 to use a proposition o with alternating

truth values on all traces of a team to track progress. We define

translations φ 7→ φ+ from synchronous TeamLTL to fragments

of TeamCTL∗ that are used in the embeddings. The translations

are designed such that T |=s φ if and only if To |=∗ φ
+ (for fitting

∗ ∈ {∀,∃}), where To is obtained from T by introducing a fresh

alternating proposition o. Some of the translations additionally

preserve satisfiability, i.e., φ is satisfiable if and only if φ+ is.

Let us now formalise our results a bit more. Given a set of tracesT

over AP, letTo for o < AP be the set of traces { t | t ↾AP∈ T and o ∈

t[i] iff i mod 2 = 0 } over AP ⊎ {o}. Here, we use t ↾AP to denote

the restriction of t to AP.

Theorem 4.2. Given a synchronous TeamLTL formula φ,

one can construct in time linear in |φ | a formula φ+ in

∃TeamLTL (resp., ∃TeamCTL(6)) and φ− in ∀TeamLTL(6,NE)
(resp., ∀TeamCTL(⊆)) such that for all multisets of traces T :

T |=s φ iff To |=∃ φ
+ and T |=s φ iff To |=∀ φ

−
.

Proof. First, the embedding into ∃TeamLTL and ∀TeamLTL.

For ∃TeamLTL, we can use one of the formulae φsynch or φ ′
synch

from Subsec. 3.4. They ensure that the existentially quantified tef is

synchronous and therefore progresses on a set of traces in the same

way a set of traces would make progress in the synchronous setting.

We translate a synchronous TeamLTL formula φ into ∃TeamLTL

in the following way: φ 7→ φ ∧ ϑ , where ϑ can be either φsynch or

φ ′
synch

.

For ∀TeamLTL, we use a dual approach. Rather than identifying

a synchronous tef, we instead eliminate all non-synchronous ones.

We make use of the formula φoff ≔
(

(NE ∧ o ∧ Xo) ∨ ⊤
)

6
(

(NE ∧

¬o ∧ X¬o) ∨⊤
)

. The formula Fφoff expresses that in the current tef,

there is a defect where some of the traces in the set of traces do not

move for one step. Using this, we can rule out all non-synchronous

tefs from the universal quantifier. Our translation is: φ 7→ φ ∨ Fφoff.

Note that this formula does not express that the alternation on o

is correct in the set of traces. This indeed proves to be difficult in

this setting since the formula has to work for all tefs and thus, to

establish the alternation on o, no assumption about a tef’s progress

can be made. Thus, the formula presented here only works in the

setting of model checking.

Now we consider the embedding into ∃TeamCTL and

∀TeamCTL. For an embedding into TeamCTL, we have to expand

on the ideas used for ∃TeamLTL further. Since we make use of the

quantified versions of the modalities here, we have to find a new

formula that expresses the alternation on o. Also, since we do not

have a global tef that can be checked for synchronicity anymore,

we need to find a translation that ensures synchronicity for each

modality. Consider the following formulae:

ψsynch ≔ (o ∧ X∃¬o) 6 (¬o ∧ X∃o),

ψ ′
synch ≔ (o ∧ X∃¬o) ∨ (¬o ∧ X∃o),

Temporal Team Semantics Revisited LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel

ψ ′′
synch ≔

(

o ∧ X∀(¬o ∨ o ⊆ ¬o)
)

∨
(

¬o ∧ X∀(o ∨ o ⊆ ¬o)
)

.

By using these formulae, we can express the alternation on o using

the TeamCTL modalities: G∃ψsynch expresses this property directly.

The formulae o ∧ G∀ψ
′
synch

and o ∧ G∀ψ
′′
synch

are variants of this

formula, that do not use 6. Finally, if we impose fairness for time

evaluation functions, then the formula o ∧ G∃ψ
′
synch

yields the

same effect as well. Thus, we have a formula that expresses the

alternation of o in ∀TeamCTL(⊆) and ∃TeamCTL(6), and, if we

impose fairness, also in ∃TeamCTL. Note that these formulae are

only needed as conjuncts to make a formula unsatisfiable by teams

violating the property. For model checking, we can directly encode

the property into the structure as sketched earlier.

We start with the embedding into ∃TeamCTL. Compared to

the embedding into TeamLTL where the time evaluation function

is constant throughout the formula and thus can be checked for

synchronicity via φsynch, we have to deal with newly quantified

time evaluation functions for each operator in the embedding into

TeamCTL. This is done by enforcing synchronicity in the trans-

lation of every operator. We use a function (_)∗ that replaces all

modalities in a formula with a synchronous variant and leaves

atomic propositions and Boolean connectives unchanged. For the

non-trivial cases, the translation is defined as follows:

(Fφ)∗ ≔ [dep(o)U∃(φ)
∗ ∧ dep(o)],

(Gφ)∗ ≔ [(φ)∗ ∧ dep(o)W∃⊥],

(φUψ)∗ ≔ [(φ)∗ ∧ dep(o)U∃(ψ)
∗ ∧ dep(o)],

(Xφ)∗ ≔ X∃
(

dep(o) ∧ (φ)∗
)

,

(φWψ)∗ ≔ [(φ)∗ ∧ dep(o)W∃(ψ)
∗ ∧ dep(o)].

The translation for a synchronous TeamLTL formula φ into

∃TeamCTL(6) (note that dependence atoms can be defined using

6) is then φ 7→ (φ)∗ ∧ θ , where θ is one of the formulae G∃ψsynch
or o ∧ G∃ψ

′
synch

(if fairness for time evaluation is presupposed).

For the embedding into ∀TeamCTL(⊆), we use the same ideas

as for the embedding into ∃TeamCTL(6). The only difference here

is that we have to construct a different version of the function

(_)∗ that makes use of the universally quantified instead of the

existentially quantified modalities. It is given as follows:

(Fφ)∗ ≔ [⊤U∀(φ)
∗ ∨ o ⊆ ¬o]

(Gφ)∗ ≔ [(φ)∗W∀o ⊆ ¬o]

(Xφ)∗ ≔ X∀
(

o ⊆ ¬o ∨ (φ)∗
)

(φUψ)∗ ≔ [(φ)∗U∀(ψ)
∗ ∨ o ⊆ ¬o]

(φWψ)∗ ≔ [(φ)∗W∀(ψ)
∗ ∨ o ⊆ ¬o]

The translation then is φ 7→ (φ)∗ ∧ o ∧ G∀ψ
′′
synch

. □

Apart from the previous translation and the corresponding theo-

rem, we also make use of the synchronous ∃TeamCTL modalities in

the proof of Theorem 5.2. There, we use φUσψ for φ∧dep(o)U∃ψ ∧

dep(o), Xσφ for X∃φ ∧ dep(o) etc.

In conjunction with the considerations about establishing the

alternation on o, we obtain the following two corollaries:

Corollary 4.3. Model checking for synchronous TeamLTL can

be reduced in linear time in the given formula length and model to

model checking for ∃TeamLTL, ∀TeamLTL(6,NE), ∃TeamCTL(6)

and ∀TeamCTL(⊆).

Corollary 4.4. Satisfiability for synchronous TeamLTL can be

reduced in linear time in the given formula length to satisfiability

for ∃TeamLTL, ∃TeamCTL(6) and ∀TeamCTL. Assuming fairness

of tefs, this also holds for ∃TeamCTL(⊆).

5 TEAMCTL(6) IS HIGHLY UNDECIDABLE

We show how to obtain high undecidability by encoding recur-

rent computations of non-deterministic 2-counter machines (N2C).

A non-deterministic 2-counter machineM consists of a list I of n

instructions that manipulate two counters (ℓeft and r ight) Cℓ and

Cr . All instructions are in one of the following three forms:

C+a goto {j, j ′}, or C−
a goto {j, j ′},or

if Ca = 0 goto j else goto j ′,

where a ∈ {ℓ, r }, 0 ≤ j, j ′ < n. A configuration is a tuple (i, j,k),

where 0 ≤ i < n is the next instruction to be executed, and j,k ∈ N

are the current values of the counters Cℓ and Cr . The execution

of the instruction i : C+a goto {j, j ′} (i : C−
a goto {j, j ′}, resp.) incre-

ments (decrements, resp.) the value of the counter Ca by 1. The

next instruction is selected nondeterministically from the set {j, j ′}.

The instruction i : if Ca = 0 goto j, else goto j ′ checks whether

the value of the counter Ca is currently 0 and proceeds to the next

instruction accordingly. The consecution relation of configurations

is defined as usual. A computation is an infinite sequence of consec-

utive configurations starting from the initial configuration (0, 0, 0).

A computation is b-recurring if the instruction labelled b occurs

infinitely often in it.

Theorem 5.1 ([2]). Deciding whether a given non-deterministic

2-counter machine has a b-recurring computation for a given label b

is Σ11-complete.

We reduce the existence of a b-recurring computation of a given

N2C machineM and an instruction label b to the model checking

problem of ∃TeamCTL(6).

Theorem 5.2. Model checking for ∃TeamCTL(6) is Σ11-hard.

Proof. Let I be a given set of instructions of a 2-counter ma-

chine M with the set of labels I ≔ {i1, . . . , in } for n ∈ N, and an

instruction label b ∈ I. We construct a TeamCTL(6)-formula φI,b
and a Kripke structure KI such that

Traces(KI) |=∃ φI,b iffM has a b-recurring computation. (1)

From KI one can obtain all sequences of configurations (even

those which are not consecutive computations) for the machine

M . The formula φI,b then allow us to pick some particular traces

generated from the structure. This essentially corresponds to exis-

tential quantification of the computation. The Kripke structure KI
is depicted in Fig. 1.

Intuitively, the structure is partitioned into five parts. The two

left-most parts (see Fig. 1) encode values of the left counter, the

two following parts encode values of the right counter, and the

LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel Jens Oliver Gutsfeld, Christoph Ohrem, Arne Meier, and Jonni Virtema

KI :

root

qtℓ,2
qtr,1
qtr,2
o

qtℓ,1
qtr,1
qtr,2
o

qtℓ,1
qtℓ,2
qtr,2
o

qtℓ,1
qtℓ,2
qtr,1
o

qtℓ,1
qtℓ,2
qtr,1
qtr,2
o

qtℓ,1 qtℓ,2 qtr,1 qtr,2

i1 · · · in

�,o,#

i1 · · · in

�,�,o,#

i1 · · · in

�,o,#

i1 · · · in

�,�,o,#

�,c

�,o �

�,c

�,o �

c
o

c,o

c
o

c,o

i1 · · · in

�,o,#

i1 · · · in

�,o,#

c

c,o

o
c

c,o

o

ptℓ,1
,p⊤,tℓ

ptℓ,2
,p⊤,tℓ

ptr,1
,p⊤,tr

ptr,2
,p⊤,tr

Figure 1: Kripke structure KI used in proof of Theorem 5.2. Dotted boxes mean that the propositions below it are labelled in

every state within the box. Dashed boxes with states having labels i j for 1 ≤ j ≤ n simplify the presentation as follows: the

incoming/outgoing edges to these boxes are connected with every vertex in the dashed box; the propositions (□,o, #,■) above

dashed boxes are labelled at every state in the box. We call the trace generated via the rightmost part πd .

right-most part is a łdummy tracež πd (we come to an explana-

tion for πd a bit later). Every trace that is different from πd has a

proposition p⊤ labeled in every state after the root. We are using

four types of traces: two trace (types) tℓ,1, tℓ,2 (the first and second

from left in Fig. 1) for counter Cℓ and two trace (types) tr,1, tr,2
(the third and fourth from left in Fig. 1) for counter Cr . Intuitively,

ts,2 encodes the current value for the counterCs , for s ∈ {r , ℓ}. Our

construction ensures that trace ts,1 is always one step ahead of ts,2.

We enforce that they have the same c labelling and therefore the

counter value is carried from one # position to the next (subject

to an increment/decrement operation). Such trace pairs are also

called ℓ-traces (or r -traces, respectively) and globally have a propo-

sition tℓ (resp., tr) labelled in their non-root states. Each such trace

type t ∈ T ≔ {tℓ,1, tℓ,2, tr,1, tr,2} also has a proposition pt that is

globally true everywhere (except in the root) and another proposi-

tion qt that is true in the second state while the other three qt ′ for

t ′ ∈ T \ {t} are true in the first state (this is used for identification

purposes). These trace-pairs are used to simulate incrementing,

resp., decrementing the value of the respective counter. The value

m ∈ N of a counter is simulated via a #-symbol divided sequence

of states in a trace wherem states contain a proposition c . This is

depicted in Fig. 2.

The alternating o-labels on KI -states in combination with strict-

monotonicity of tefs, allow for the definition of variants of U- F-, G-

and X-operators that are evaluated in our setting in a synchronous

way:

[φUσψ] ≔ [dep(o) ∧ φU∃dep(o) ∧ψ],

Fσφ ≔ [⊤Uσφ],

Gσφ ≔ G∃(dep(o) ∧ φ),

Xσφ ≔ X∃(dep(o) ∧ φ).

Initially, Traces(KI) contains all possible combinations and se-

quences of counter modifications. Intuitively, we sort these traces

into five groups of T plus the dummy trace. In the first step, we

need to cut this tremendous number of traces down to four traces

(plus the dummy trace). This is realised by the formula φI,b that

is a split into two subformulae (after we synchronously make one

step):

φI,b ≔ Xσ (p⊤ ∨ (φstruc ∧ XσXσφcomp)).

Note that πd has to be always split to the right side (as it has not

p⊤ labelled) and thereby prevents an empty split on that side. The

vast majority of unconsidered traces are assigned to the left side of

the split.

Temporal Team Semantics Revisited LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel

tℓ,2:
#,o #,o #,ooc c c cc,o c,o c,o

tℓ,1:
#,o #,o #,ooc c c c cc,o c,o c,o c,o

Figure 2: Simulation of a N2C via traces as used in the proof of Theorem 5.2. For presentation reasons, some of the labelled

propositions have been omitted. The excerpt of the traces shows that the counterCℓ is incremented first from 3 to 4 and then

to 5. Note that tℓ,2 encodes the current value for the counter Cℓ .

We need to define an auxiliary formula

φsingle(S) ≔ Gσ
∧

p∈S

dep(p)

expressing, that a particular trace team agrees on each time step

with respect to the set of propositions in S . Now, we turn to the

right formula that is a conjunction of two formulae:

φstruc≔
∧

t ∈T

X∃qt ∧
[

(tℓ ∧ φsingle(S))∨(tr ∧ φsingle(S)) ∨ ¬p⊤
]

,

where S ≔ {#, c} ∪ I. The first conjunct of this formula ensures

that we are dealing with at least one trace of each type of t ∈ T

(the trace πd and every different type t ′ , t is ‘paused’). The

second conjunct splits away πd and groups the traces according

to the left and right counter. There, it forces that ts,1 has the same

labelling (with respect to #, c and instruction labels from I) as ts,2
for s ∈ {r , ℓ}. This together with the construction of KI ensures

that we are dealing with exactly four traces.

The next formula, φcomp, is used to desynchronise trace ts,1 from

ts,2 (for s ∈ {ℓ, r }) by exactly one #-interval to enable enforcing the

de/increment-operation later. Again, we first split πd away and then

say that the label b is occurring infinitely often via θbrec ≔ G∃F∃b,

then desynchronise with the Until operator and say that the compu-

tation is valid. Note that it is crucial to use U∃ for desynchronising

the traces (compare Fig. 1: ts,2 has to stay at the first #, while ts,1
advances to the second #; so, this is handled via the □ together with

the ■). The i1 at the end ensures that the first instruction of I is

executed first:

φcomp ≔ ¬p⊤ ∨ ([□U∃■ ∧ θvalid] ∧ θbrec ∧ i1) .

In the following, we define the formulae required for implement-

ing the instructions of the N2C machine; in this context, we write

s = ℓ and s̄ = r or vice versa. When we increment/decrement a

counter, we need a formula that makes sure that on the traces for

the other counter the counter value stays the same (hence ts̄,1 and

ts̄,2 have the same next #-interval with respect to c):

halt ≔ Xσ [dep(c) ∧ ¬#Uσ #].

Now, we can define the formula that states incrementation of the

counter Cs . Notice that the c in the left part of the synchronous

Until makes sure that the counter value differs by exactly one. The

synchronousUntil operator matches the number of c-labelled states

on both s-traces and then verifies that the count for the first trace

contains one more c:

Cs -inc ≔
(

Xσ [c Uσ (pts,2 ∧¬c) ∨ (pts,1 ∧ c ∧ Xσ¬c)]
)

∨ (halt∧ ts̄).

Symmetrically, we can define a decrement operation:

Cs -dec ≔
(

Xσ [c Uσ (pts,2 ∧ c ∧ Xσ¬c) ∨ (pts,1 ∧¬c)]
)

∨ (halt∧ ts̄).

Now, we define the formulae for the possible instructions.

i : C+s goto {j, j ′}: The following formula ensures, that we in-

crease the counterCs and then reach the next #, where either

j or j ′ is uniformly true.

θi ≔ Cs -inc ∧ Xσ ([¬#U∃# ∧ (j 6 j ′)]

i : C−
s goto {j, j ′}: As before, jump to the next # and have j or

j ′ uniformly after decreasing the counter Cs .

θi ≔ Cs -dec ∧ Xσ ([¬#U∃# ∧ (j 6 j ′)]

i : if Cs = 0 goto j, else goto j ′: Here, we use the Boolean dis-

junction for distinguishing the part of the if-then-else con-

struct. Recall that ts,2 encodes the current counter value of

Cs . The halt-formula ensures that the counter values stays

the same:

θi ≔ Xσ

(

(

((qts,2 ∧ ¬c) ∨ (¬qts,2)) ∧ [¬#U∃# ∧ j]
)

6

(

((qts,2 ∧ c) ∨ (¬qts,2)) ∧ [¬#U∃# ∧ j ′]
)

)

∧ halt.

Next, we need a formula stating that only the label j ∈ I is true:

only(j) ≔ j ∧
∧

i,j

¬i .

Now, let θvalid state that each #-labelled position encodes the cor-

rect instruction of the N2C machine. Note that due to dep(#) the

encoding of the traces remains in synch:

θvalid ≔ G∃

(

dep(#) ∧

((

∧
∨

i<n

(only(i) ∧ θi)

)

∨ ¬#

))

.

The length of the formula φI,b is linear in |I|.

The direction ł⇐ž of Eq. (1) follows by construction of φI,b and

KI . For the other direction, note that if φI,b is satisfied then this

means the label b needs to appear infinitely often and the encoded

computation of the N2C machine is valid. □

6 TRANSLATING FROM TeamCTL∗ TO AABA

In the previous section, we showed that model checking is highly

undecidable even for a very restricted fragment of TeamCTL∗. This

motivates the search for decidable restrictions. For this purpose, we

first introduce Alternating Asynchronous Büchi Automata (AABA).

Let M = {1, 2, . . . ,n} be a set of directions and Σ an input al-

phabet. An Alternating Asynchronous Büchi Automaton (AABA)

[20] is a tuple A = (Q, ρ0, ρ, F) where Q is a finite set of states,

ρ0 ∈ B+(Q) is a positive Boolean combination of initial states,

ρ : Q × Σ × M → B+(Q) maps triples of control locations, input

symbols and directions to positive Boolean combinations of control

LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel Jens Oliver Gutsfeld, Christoph Ohrem, Arne Meier, and Jonni Virtema

locations, and F ⊆ Q is a set of final states. A tree T is a subset

of N∗ such that for every node t ∈ N∗ and every positive integer

n ∈ N: t · n ∈ T implies (i) t ∈ T (we then call t · n a child of t),

and (ii) for every 0 < m < n, t ·m ∈ T. We assume every node

has at least one child. A path in a tree T is a sequence of nodes

t0t1 . . . such that t0 = ε and ti+1 is a child of ti for all i ∈ N. A run

of an AABA A over n infinite words w1, . . . ,wn ∈ Σ
ω is defined

as a Q-labeled tree (T, r) where r : T → Q is a labelling function.

Additionally, for each t ∈ T, we have n offset counters ct1, . . . , c
t
n

starting at cti = 0 for all i and t with |t | ≤ 1. Together, the labelling

function and offset counters satisfy the following conditions:

(i) we have { r (t) | t ∈ T, |t | = 1 } |= ρ0, and

(ii) when node t ∈ T \ {ε} has children t1, . . . , tk , then there is a

d ∈ M such that

(a) cti
d
= ct

d
+ 1 and cti

d ′
= ct

d ′
for all i and d ′ , d ,

(b) we have 1 ≤ k ≤ |Q |, and

(c) the valuation assigning true to r (t1), . . . , r (tk) and false to

all other states satisfies ρ(r (t),wd (c
t

d
),d).

A run (T, r) is an accepting run iff for every path t0t1 . . . in (T, r),

a control location q ∈ F occurs infinitely often. We say that

(w1, . . . ,wn) is accepted by A iff there is an accepting run of A

onw1, . . . ,wn . The set of tuples of infinite words accepted by A is

denoted by L(A).

We also use AABA with a generalised Büchi acceptance con-

dition which we call Generalised Alternating Asynchronous Büchi

Automata (GAABA). Formally, a GAABA is an AABA in which the

set F =
⋃

Fi consists of several acceptance sets Fi and the Büchi

acceptance condition is refined such that a run (T, r) is accepting iff

every path visits a state in every set Fi infinitely often. A GAABA

can be translated to an AABA with quadratic blowup similar to the

standard translation from Generalised Büchi Automata to Büchi

Automata [12]. For this purpose, we first annotate states with the

index i of the next set Fi that requires a visit of an accepting state.

We then consecutively move to the states annotated with the next

index if such an accepting state is seen. Only those states are de-

clared accepting that indicate that an accepting state in every Fi
has been visited.

Let S ≔ {6,NE,
1

A, dep, ⊆}. We now present a translation of

TeamCTL∗(S) to AABA over a fixed number n ∈ N of traces. Note

that Theorem 3.3 would allow us to drop ‘dep’ and ‘⊆’ from the

translation, but the cost would be an exponential blowup, that does

not occur in our direct translation. We first describe the transla-

tion for ∃TeamCTL∗(S) formulae with |=∃ mode of satisfaction

and then explain how this translation can be lifted to the full logic

TeamCTL∗(S). Our translation is obtained by first constructing a

suitable Generalized Alternating Asynchronous Büchi Automaton

(GAABA) and then translating that GAABA to an AABA as de-

scribed before. For this section, it is convenient to use a different

but equivalent version of the semantics of TeamCTL∗. In this ver-

sion, we add the global time step to the left side of the satisfaction

relation |= and write (T ,τ , i) |= φ instead of (T ,τ) |= φ. When

progressing with modalities, tefs are not cut off as in our current

definition; instead they are evaluated at a later global time step, just

as in the semantics definition of synchronous TeamLTL [33]. The

definition of the satisfaction relation for quantifiers is then adjusted

accordingly: (T ,τ , i) |= ∃φ iff there is a tef τ ′ with τ ′(j) = τ (j)

for all j ≤ i such that (T ,τ ′, i) |= φ. This definition allows us to

define corresponding restrictions for the semantics of AABA and

our logics.

Let (T, r) be a run of an AABA over n ∈ N words. For every

path π ∈ (T, r), we denote by τπ the time evaluation function ob-

tained by setting τπ (i) ≔ (c
π (i)
1 , . . . , c

π (i)
n). The set I(T,r) ≔ { τπ |

π is a path in (T, r) } is the set of induced tefs for a run (T, r). For

an AABA A and a set of tefs TE, the language of A restricted

to TE is given by LTE(A) ≔ {w = (w1, . . . ,wn) ∈ (Σω)n |

∃(T, r) : (T, r) is an accepting run of A onw and I(T,r) ⊆ TE }.

The TE emptiness problem for an AABA A is to check whether

LTE(A) is empty.

Given a team (T ,τ) and k ∈ N, the tef τ is k-synchronous iff for all

i ∈ N and t , t ′ ∈ T , |τ (i, t) − τ (i, t ′)| ≤ k . The term k-synchronicity

indicates that traces are not allowed to diverge by more than k

steps during the execution. Let switchτ (i) ≔ |{ t ∈ T | τ (i − 1, t) =

τ (i, t),τ (i, t) , τ (i + 1, t)}| for i ≥ 1 and switchτ (0) ≔ 0 be the

number of context switches performed between indices i and i + 1.

A tef τ is k-context-bounded iff switchτ (i) ≤ 1 for all i ∈ N and
∑

i ∈N switchτ (i) ≤ k . The term k-context-boundedness states that

only a single trace is allowed to progress on each global time step

and we can only switch between different traces at most k times.

For AABA, the following holds.

Theorem 6.1 ([20, Cors. 3.6&3.13, Thms. 3.12&3.17]).

(1) The emptiness problem for AABA is undecidable.

(2) The k-synchronous emptiness problem for AABA with n traces

is EXPSPACE-complete and is PSPACE-complete for fixed n.

(3) The k-context-bounded emptiness problem for AABA is (k −2)-

EXPSPACE-complete.

Note that the hardness results in [20] were formulated for AAPA,

not AABA. However, the proofs rely only on reachability and not

on a parity acceptance condition. Thus, they carry over to AABA

as well.

We now define a restricted semantics for our logics similar to

the restricted semantics for AABA. For a team (T ,τ), a TeamCTL∗

formula φ and a set of tefs TE with τ ∈ TE, we write (T ,τ) |=TE φ to

denote that (T ,τ) satisfies φ under a semantics in which quantifiers

∃ and ∀ range only over tefs in TE. This is straightforwardly ex-

tended to modes of satisfaction |=∗,TE for ∗ ∈ {∃,∀}. The fixed size

TE satisfiability problem fs-SAT(TE) is then to decide for a given

natural number n and a (TeamCTL∗, |=∗) formula φ whether there

exists a multiset of traces T with |T | = n such that T |=∗,TE φ. The

fixed size TE model checking problem fs-MC(TE) is to decide for a

Kripke model, a (TeamCTL∗, |=∗) formula φ and natural number

n whether all multisets of traces T ⊆ Traces(K) of size n satisfy

φ under TE semantics. The TE path checking problem PC(TE) is

defined analogously. We set Ln
TE
(φ) ≔ { T | |T | = n ∧T |=∗,TE φ }

to be the set of finite multisets of traces of size n satisfying φ under

the TE semantics.

We now describe the translation from ∃TeamCTL∗(S) formulae

to GAABA over teams of fixed size n. We also only consider the

|=∃ mode of satisfaction. After that we show how to generalise

the construction to the full logic TeamCTL∗(S). This translation is

based on the classical Fischer-Ladner construction translating LTL

formulae to non-deterministic Büchi automata [12]. We construct

a GAABA Aψ inductively over the quantification depth such that

Temporal Team Semantics Revisited LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel

Aψ has an accepting run over the input multiset of traces under TE

semantics if and only if there is a tef such thatψ is fulfilled by the

input multiset of traces under TE semantics. This allows us to apply

decidability results for AABA under restricted semantics, especially

those from [20], to decision problems for TeamCTL∗(S).

Let us explain this construction in turn. In general, we perform

the standard Fischer-Ladner construction for LTL, i.e., we annotate

states with the formulae that should hold whenever an accepting

run visits the respective states. The transition function is then

defined such that the requirements for the successor induced by

these formulae are met. Finally, we pick accepting sets such that

in an accepting run, ψ1Uψ2-formulae are either not required at a

certain time step or the run must eventually visit a state containing

ψ2. The indices associated with formulae indicate the traces of

the team which we consider for the respective formula. There are

three additional problems that are not captured by the standard

construction: asynchronicity, quantifiers and non-standard logical

operators that are not present in LTL, i.e. the split operator and

additional team semantics atoms.

In a GAABA, time evaluation functions with asynchronous

progress on different traces can be modelled straightforwardly

by asynchronous moves. In every step, we non-deterministically

pick the traces to be advanced, ensure that the atomic propositions

in the next state of Aφ match those given by the next index of

that trace and maintain the atomic propositions for all other traces.

W.l.o.g., we assume that only one trace is advanced in each time step

by a given tef and it will be clear how to extend the construction

to general tefs. In order to handle quantifiers, we use conjunctive

alternation. For every existential subformula ∃ψ contained in a

state q, we guess an initial state of Aψ which agrees with q on the

atomic propositions and then conjunctively proceed from that state

according to the transition function of Aψ . Let us finally discuss

the split operator and team semantics atoms. For the former, we

use indexed subformulae to track which traces we analyse with

the regard to the respective subformula. In the initial states, we

work with the full index set [n] for the formula φ and whenever we

encounter a split ψ1 ∨ψ2, we non-deterministically partition the

given index set into two sets and check eachψi only with regard to

its respective index set. Using this information, we can directly infer

whether a dependence atom dep(ψ1, . . . ,ψn ,φ) holds in that state

by checking whether all traces agreeing on the formulaeψ1, . . . ,ψn

also agree on φ. Likewise, the atoms NE,
1

A and ⊆ are handled by

explicitly checking the semantics for each state. Notice again that

we only allow propositional formulae in dependence atoms, so the

semantics of these atoms depend only on the current state.

For the full logic and the |=∀ mode of satisfaction, we handle

universal quantifiers by complementing automata for the existential

quantifiers and introducing Boolean negation.

Formally, for a natural number n (this will correspond to the

number of traces later), we set [n] ≔ {1, . . . ,n} and I ≔ 2[n]. For

an index set M ∈ I , let SP(M) = { (M1,M2) | M = M1 ⊎ M2 } be

the set of possible splits. Notice that M1 or M2 can be the empty

set here. We denote by Sub(φ) the set of subformulae, closed under

negation, of an ∃TeamCTL∗ formulaφ that is defined in the obvious

way.

Definition 6.2. Let n ∈ N. For an ∃TeamCTL∗(S) formula φ, the

indexed Fischer-Ladner-closure over n traces cl(φ) ⊆ 2(Sub(φ))×I is

given by the set of all pairs (ψ ,M) of subformulaeψ of φ and index

setsM ∈ I with the following properties:

• Ifψ ∈ Sub(φ) andM ∈ I , then (ψ ,M) ∈ cl(φ).

• If (p,M) ∈ cl(φ) for p ∈ AP, then (¬p,M) ∈ cl(φ).

• If (dep(φ1, . . . ,φk ,ψ),M) ∈ cl(φ), then (¬φi ,M) ∈ cl(φ) for

1 ≤ i ≤ k and (¬ψ ,M) ∈ cl(φ).

• If (φ1 · · ·φk ⊆ ψ1 · · ·ψk ,M) ∈ cl(φ), then (¬φi ,M),

(¬ψi ,M) ∈ cl(φ) for 1 ≤ i ≤ k .

Definition 6.3. Let n ∈ N and φ be an ∃TeamCTL∗(S) formula,

and cl(φ) be the indexed Fischer-Ladner-closure over n traces. A

set S ∈ 2cl(φ) is consistent iff the following holds:

(1) Let ψ be a propositional formula such that ψ ,¬ψ occur in

cl(φ). Then we have that

• for all i ∈ [n]: (ψ , {i}) ∈ S iff (¬ψ , {i}) < S .

• for allM ∈ I : (ψ ,M) ∈ S iff ∀j ∈ M : (ψ , {j}) ∈ S .

• for allM ∈ I : (¬ψ ,M) ∈ S iff ∀j ∈ M : (¬ψ , {j}) ∈ S .

(2) If (ψ1 ∧ψ2,M) ∈ cl(φ), then (ψ1 ∧ψ2,M) ∈ S iff (ψ1,M) ∈ S

and (ψ2,M) ∈ S .

(3) If (ψ1 ∨ψ2,M) ∈ cl(φ), then (ψ1 ∨ψ2,M) ∈ S iff (ψ1,M1) ∈ S

and (ψ2,M2) ∈ S for some (M1,M2) ∈ SP(M).

(4) If (ψ16ψ2,M) ∈ cl(φ)), then (ψ16ψ2,M) ∈ S iff (ψ1,M) ∈ S

or (ψ2,M) ∈ S .

(5) If (ψ1opψ2,M) ∈ cl(φ), then (ψ1opψ2,M) ∈ S implies

(ψ1,M) ∈ S or (ψ2,M) ∈ S for op ∈ {U,W}.

(6) If (dep(φ1, . . . ,φk ,ψ),M) ∈ cl(φ), then (dep(φ1, . . . ,

φk ,ψ),M) ∈ S iff ∀i, j ∈ M : (∀1 ≤ ℓ ≤ k : (φℓ , {i}) ∈

S ⇐⇒ (φℓ , {j}) ∈ S) implies ((ψ , {i}) ∈ S ⇐⇒ (ψ , {j}) ∈

S).

(7) If (NE,M) ∈ cl(φ), then (NE,M) ∈ S iffM , ∅.

(8) If (
1

A ψ ,M) ∈ cl(φ), then (
1

A ψ ,M) ∈ S iff ∀i ∈ M : (ψ , {i}) ∈

S .

(9) If (φ1 · · ·φk ⊆ ψ1 · · ·ψk ,M) ∈ cl(φ), then (φ1 · · ·φk ⊆

ψ1 · · ·ψk ,M) ∈ S iff for all i ∈ M there exists j ∈ M : If

(φℓ , {i}) ∈ S then (ψℓ , {j}) ∈ S , and if (¬φℓ , {i}) ∈ S then

(¬ψℓ , {j}) ∈ S , for 1 ≤ ℓ ≤ k .

We denote the set of all consistent sets by Con(φ).

Definition 6.4. Let Σ ≔ 2AP. The local transition relation −→ is a

maximal subset of Con(φ)×[n]×Σ×Con(φ) such that for S
i,σ
−−−→ S ′

(meaning (S, i,σ , S ′) ∈→) with S, S ′ ∈ Con(φ), σ ∈ Σ and i ∈ [n],

the following holds:

• For j , i with (ψ , {j}) ∈ S : (ψ , {j}) ∈ S ′, whereψ ∈ {p,¬p |

p ∈ AP }.

• For all p ∈ AP : (p, {i}) ∈ S ′ ⇐⇒ p ∈ σ .

• If (Xψ ,M) ∈ S , then (ψ ,M) ∈ S ′.

• If (ψ1opψ2,M) ∈ S and (ψ2,M) < S , then (ψ1opψ2,M) ∈ S ′

for op ∈ {U,W}.

This relation roughly denotes whether a state would be a suitable

successor of another state according to the transition relation in the

standard Fischer-Ladner construction when an input symbol is read

on the i-th component. Notice that this relation and the transition

function we are about to define progress on a single trace in one

step, while our tefs can progress on multiple steps at once. This

LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel Jens Oliver Gutsfeld, Christoph Ohrem, Arne Meier, and Jonni Virtema

is without loss of generality as simultaneous progress on multiple

traces can easily be simulated using consecutive transitions over

intermediate states.

Using the definitions just described, we can construct a suitable

AABA for a TeamCTL∗(S) formula φ. The details of the translation

including Boolean negation can be found in the extended arXiv

version of the paper [18]. We then obtain the following Theorem.

Theorem 6.5. Let S = {6,NE,
1

A, dep, ⊆}.

(1) For every (TeamCTL∗(S), |=∗) formula φ and natural number

n, there is a GAABA Aφ such that LTE(Aφ) is equivalent
2

to Ln
TE
(φ) for all sets of tefs TE.

(2) For every (TeamCTL∗(S), |=∗) formula φ and natural number

n, there is an AABA Aφ such that LTE(Aφ) is equivalent
2 to

Ln
TE
(φ) for all sets of tefs TE.

(3) For all sets of tefs TE, if it is decidable whether LTE(A) is

empty for every AABA A, then the finite TE satisfiability and

model checking problems and the TE path checking problem

for TeamCTL∗(S) are decidable.

We note that the undecidability proof for TeamCTL(6) model

checking of Theorem 5.2 relies on the use of infinite teams. This

directs us to consider teams of fixed size in order to recover decid-

ability. Finally, applying Theorem 6.1 to Theorem 6.5, and utilising

Theorem 3.3, we obtain the following. Here ALL denotes the set of

all generalised atoms.

Corollary 6.6. Let TE be the set of k-synchronous or k-context-

bounded tefs and S = {6,NE,
1

A, dep, ⊆}.

(1) The problems fs-SAT(TE), fs-MC(TE), and PC(TE) for the log-

ics TeamCTL∗(S,ALL) are decidable.

(2) For a fixed formula φ and fixed n,k ∈ N, the fixed size

k-synchronous or k-context-bounded model checking over n

traces for TeamCTL∗(S) is decidable in polynomial time.

The last item follows from the fact that for fixed parameters,

the automata Aφ are of constant size. Translations described in

[20, Theorem 3.11, Corollary 3.16] can be used to yield equivalent

Büchi automata of constant size. The emptiness test on the product

with the automaton accepting the input traces is then possible in

polynomial time.

7 CONCLUSION

In this paper, we revisited temporal team semantics and introduced

quantification over tefs in order to obtain fine-grained control of

asynchronous progress over different traces. We discussed required

properties for tefs in depth and showed that, unlike previous asyn-

chronous hyperlogics, variants of our logic are able to express

some of these properties (like synchronicity and fairness) them-

selves. Table 2 summarises the complexity results for the model

checking problem. We showed that the model checking problem is

highly undecidable already for ∃TeamCTL with Boolean disjunc-

tions. However, we also showed that TeamCTL∗(6,NE,
1

A, dep, ⊆)

can be translated to AABA over teams of fixed size, thus yielding a

general approach to define restricted asynchronous semantics and

obtain decidability for the path checking problem as well as the

finite model checking and satisfiability problem.

2Here, we treat sets of tuples as multisets in the obvious way.

Model Checking Problem for Complexity & Reference

∃TeamLTL(6, ⊆) Σ
0
1-hard (Cor. 4.3 & [33, Thm. 2])

∀TeamLTL(6, ⊆,NE) Σ
0
1-hard (Cor. 4.3 & [33, Thm. 2])

∃TeamCTL(6, ⊆) Σ
0
1-hard (Cor. 4.3 & [33, Thm. 2])

∀TeamCTL(6, ⊆) Σ
0
1-hard (Cor. 4.3 & [33, Thm. 2])

∃TeamCTL(6) Σ
1
1-hard (Thm. 5.2)

TeamCTL∗(S,ALL) for k-syn-

chronous or k-context-bounded

tefs

decidable (Thm. 3.3, Cor. 6.6)

TeamCTL∗(S) for k-synchro-

nous or k-context-bounded tefs,

where k and the number of

traces is fixed

polynomial time (Cor. 6.6)

Table 2: Complexity results overview. The Σ
0
1-hardness

results follow via embeddings of synchronous TeamLTL,

whereas the Σ
1
1-hardness truly relies on asynchronity. ALL

is the set of all generalised atoms and S = {6,NE,
1

A, dep, ⊆}.

A possible direction for future work would be to study further

restricted classes of tefs beyond k-synchronicity and k-context-

boundedness for which the corresponding emptiness problem for

AABA is decidable, since this would not only lead to new decidable

semantics for our logic, but also for other logics such as Hµ [20].

ACKNOWLEDGMENTS

The first two authors were partially funded by the DFG grant MU

1508/3-1. The third author was partially funded by the DFG grant

ME 4279/1-2. The fourth author was partially funded by the DFG

grant VI 1045/1-1. We thank the anonymous reviewers for their

helpful comments.

REFERENCES
[1] Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer (Eds.).

2016. Dependence Logic, Theory and Applications. Springer. https://doi.org/10.
1007/978-3-319-31803-5

[2] Rajeev Alur and Thomas A. Henzinger. 1994. A Really Temporal Logic. J. ACM
41, 1 (1994), 181ś204. https://doi.org/10.1145/174644.174651

[3] Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and
César Sánchez. 2021. A Temporal Logic for Asynchronous Hyperproperties. In
CAV (1) (Lecture Notes in Computer Science, Vol. 12759). Springer, 694ś717.

[4] Raven Beutner and Bernd Finkbeiner. 2021. A Temporal Logic for Strategic
Hyperproperties. In 32nd International Conference on Concurrency Theory, CON-
CUR 2021, August 24-27, 2021, Virtual Conference (LIPIcs, Vol. 203), Serge Haddad
and Daniele Varacca (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
24:1ś24:19. https://doi.org/10.4230/LIPIcs.CONCUR.2021.24

[5] Borzoo Bonakdarpour, Pavithra Prabhakar, and César Sánchez. 2020. Model
Checking Timed Hyperproperties in Discrete-Time Systems. In NASA Formal
Methods - 12th International Symposium, NFM 2020, Moffett Field, CA, USA, May
11-15, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12229), Ritchie
Lee, Susmit Jha, and Anastasia Mavridou (Eds.). Springer, 311ś328. https://doi.
org/10.1007/978-3-030-55754-6_18

[6] Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. 2015. Unifying Hyper
and Epistemic Temporal Logics. In Foundations of Software Science and Compu-
tation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science,
Vol. 9034), Andrew M. Pitts (Ed.). Springer, 167ś182. https://doi.org/10.1007/978-
3-662-46678-0_11

[7] Laura Bozzelli, Adriano Peron, and César Sánchez. 2021. Asynchronous Ex-
tensions of HyperLTL. In 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1ś13. https:
//doi.org/10.1109/LICS52264.2021.9470583

Temporal Team Semantics Revisited LICS ’22, August 2ś5, 2022, Be’er Sheva, Israel

[8] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 2001. Model checking.
MIT Press.

[9] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties.
In Principles of Security and Trust - Third International Conference, POST 2014, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture Notes in Computer
Science, Vol. 8414), Martín Abadi and Steve Kremer (Eds.). Springer, 265ś284.
https://doi.org/10.1007/978-3-642-54792-8_15

[10] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157ś1210. https://doi.org/10.3233/JCS-2009-0393

[11] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. 2019.
The Hierarchy of Hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. IEEE, 1ś13.
https://doi.org/10.1109/LICS.2019.8785713

[12] Stéphane Demri, Valentin Goranko, and Martin Lange. 2016. Temporal Logics
in Computer Science: Finite-State Systems. Cambridge University Press. https:
//doi.org/10.1017/CBO9781139236119

[13] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema.
2018. Approximation and dependence via multiteam semantics. Ann. Math. Artif.
Intell. 83, 3-4 (2018), 297ś320. https://doi.org/10.1007/s10472-017-9568-4

[14] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for
Model Checking HyperLTL and HyperCTL∗ . In Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel Kroening
and Corina S. Pasareanu (Eds.). Springer, 30ś48. https://doi.org/10.1007/978-3-
319-21690-4_3

[15] Bernd Finkbeiner andMartin Zimmermann. 2017. The First-Order Logic of Hyper-
properties. In 34th Symposium on Theoretical Aspects of Computer Science, STACS
2017, March 8-11, 2017, Hannover, Germany (LIPIcs, Vol. 66), Heribert Vollmer
and Brigitte Vallée (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
30:1ś30:14. https://doi.org/10.4230/LIPIcs.STACS.2017.30

[16] Erich Grädel and Richard Wilke. 2022. Logics with Multiteam Semantics. ACM
Trans. Comput. Log. 23, 2 (2022), 13:1ś13:30. https://doi.org/10.1145/3487579

[17] Erich Grädel, Phokion G. Kolaitis, Juha Kontinen, and Heribert Vollmer. 2019.
Logics for Dependence and Independence (Dagstuhl Seminar 19031). Dagstuhl
Reports 9, 1 (2019), 28ś46. https://doi.org/10.4230/DagRep.9.1.28

[18] Jens Oliver Gutsfeld, ArneMeier, ChristophOhrem, and Jonni Virtema. 2021. Tem-
poral Team Semantics Revisited. CoRR abs/2110.12699 (2021). arXiv:2110.12699
https://arxiv.org/abs/2110.12699

[19] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2020. Proposi-
tional Dynamic Logic for Hyperproperties. In 31st International Conference on
Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Vir-
tual Conference) (LIPIcs, Vol. 171), Igor Konnov and Laura Kovács (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 50:1ś50:22. https://doi.org/10.4230/
LIPIcs.CONCUR.2020.50

[20] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2021. Automata
and fixpoints for asynchronous hyperproperties. Proc. ACM Program. Lang. 5,
POPL (2021), 1ś29. https://doi.org/10.1145/3434319

[21] Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni Virtema. 2020.
Descriptive complexity of real computation and probabilistic independence logic.

In LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, July 8-11, 2020, Holger Hermanns, Lijun Zhang, Naoki
Kobayashi, and Dale Miller (Eds.). ACM, 550ś563. https://doi.org/10.1145/
3373718.3394773

[22] Miika Hannula and Jonni Virtema. 2021. Tractability Frontiers in Probabilistic
Team Semantics and Existential Second-Order Logic over the Reals. In Logics in
Artificial Intelligence - 17th European Conference, JELIA 2021, Virtual Event, May
17-20, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12678), Wolfgang
Faber, Gerhard Friedrich, Martin Gebser, and Michael Morak (Eds.). Springer,
262ś278. https://doi.org/10.1007/978-3-030-75775-5_18

[23] Wilfrid Hodges. 1997. Some strange quantifiers. In Structures in Logic and
Computer Science, J. Mycielski, G. Rozenberg, and A. Salomaa (Eds.). Lecture
Notes in Computer Science, Vol. 1261. Springer Berlin / Heidelberg, 51ś65.

[24] Juha Kontinen and Max Sandström. 2021. On the Expressive Power of TeamLTL
and First-Order Team Logic over Hyperproperties. In Logic, Language, Informa-
tion, and Computation - 27th International Workshop, WoLLIC 2021, Virtual Event,
October 5-8, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 13038),
Alexandra Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz (Eds.). Springer,
302ś318. https://doi.org/10.1007/978-3-030-88853-4_19

[25] Andreas Krebs, Arne Meier, and Jonni Virtema. 2015. A Team Based Variant of
CTL. In TIME. IEEE Computer Society, 140ś149.

[26] Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. 2018.
Team Semantics for the Specification and Verification of Hyperproperties. In
43rd International Symposium on Mathematical Foundations of Computer Science
(MFCS 2018) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 117),
Igor Potapov, Paul Spirakis, and James Worrell (Eds.). Schloss DagstuhlśLeibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 10:1ś10:16. https://doi.org/10.
4230/LIPIcs.MFCS.2018.10

[27] Martin Lück. 2020. On the complexity of linear temporal logic with team seman-
tics. Theor. Comput. Sci. 837 (2020), 1ś25.

[28] Christos H. Papadimitriou. 2007. Computational complexity. Academic Internet
Publ.

[29] Nicholas Pippenger. 1997. Theories of computability. Cambridge University Press.
[30] Nir Piterman and Amir Pnueli. 2018. Temporal Logic and Fair Discrete Systems. In

Handbook of Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem (Eds.). Springer, 27ś73. https://doi.org/10.1007/978-3-
319-10575-8_2

[31] Markus N. Rabe. 2016. A temporal logic approach to Information-flow control. Ph. D.
Dissertation. Saarland University. http://scidok.sulb.uni-saarland.de/volltexte/
2016/6387/

[32] Jouko A. Väänänen. 2007. Dependence Logic - A New Approach to Independence
Friendly Logic. London Mathematical Society student texts, Vol. 70. Cambridge
University Press. http://www.cambridge.org/de/knowledge/isbn/item1164246/
?site_locale=de_DE

[33] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang.
2021. Linear-Time Temporal Logic with Team Semantics: Expressivity and
Complexity. In 41st IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021,
Virtual Conference (LIPIcs, Vol. 213), Mikolaj Bojanczyk and Chandra Chekuri
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 52:1ś52:17. https:
//doi.org/10.4230/LIPIcs.FSTTCS.2021.52

	Abstract
	1 Introduction
	2 Preliminaries
	3 Revisiting temporal team semantics
	3.1 Time evaluation functions and temporal teams
	3.2 TeamLTL, TeamCTL, and TeamCTL*
	3.3 Extensions of TeamLTL, TeamCTL, and TeamCTL*
	3.4 Expressing properties of tefs
	3.5 Basic properties of the logics

	4 Fragments of TeamCTL* and synchronous TeamLTL
	4.1 Satisfiability of TeamLTL and validity of TeamLTL
	4.2 Simulating synchronous TeamLTL with fragments of TeamCTL*

	5 TeamCTL() is highly undecidable
	6 Translating from TeamCTL* to AABA
	7 Conclusion
	Acknowledgments
	References

