431 research outputs found

    Concept of Formation Length in Radiation Theory

    Full text link
    The features of electromagnetic processes are considered which connected with finite size of space region in which final particles (photon, electron-positron pair) are formed. The longitudinal dimension of the region is known as the formation length. If some external agent is acting on an electron while traveling this distance the emission process can be disrupted. There are different agents: multiple scattering of projectile, polarization of a medium, action of external fields, etc. The theory of radiation under influence of the multiple scattering, the Landau-Pomeranchuk-Migdal (LPM) effect, is presented. The probability of radiation is calculated with an accuracy up to "next to leading logarithm" and with the Coulomb corrections taken into account. The integral characteristics of bremsstrahlung are given, it is shown that the effective radiation length increases due to the LPM effect at high energy. The LPM effect for pair creation is also presented. The multiple scattering influences also on radiative corrections in a medium (and an external field too) including the anomalous magnetic moment of an electron and the polarization tensor as well as coherent scattering of a photon in a Coulomb field. The polarization of a medium alters the radiation probability in soft part of spectrum. Specific features of radiation from a target of finite thickness include: the boundary photon emission, interference effects for thin target, multi-photon radiation. The experimental study of LPM effect is described. For electron-positron colliding beams following items are discussed: the separation of coherent and incoherent mechanisms of radiation, the beam-size effect in bremsstrahlung, coherent radiation and mechanisms of electron-positron creation.Comment: Revised review paper, 96 pages, 28 figures. Description of SLAC E-146 experiment removed, discussion of CERN SPS experiment adde

    Factors determining the risk of diabetes foot amputations - a retrospective analysis of a tertiary diabetes foot care service

    Get PDF
    Aims: To identify which factors predict the need for minor or major amputation in patients attending a multidisciplinary diabetic foot clinic. Methods: A retrospective analysis of patients who attended over a 27 month period were included. Patients had to have attended ≥3 consecutive consultant led clinic appointments within 6 months. Data was collected on HbA1c, clinic attendance, blood pressure, peripheral arterial disease (PAD), and co-morbidities. Patients were followed up for 1 year. Results: 165 patients met the inclusion criteria. 121 were male. 33 patients had amputations. There was an association between poor glycaemic control at baseline and risk of amputation when adjusted for other factors, with those patients having HbA1c ≤58 at less risk of amputation with an odds of 0.14 (0.04 to 0.53) of amputation(p = 0.0036). Other statistically significant factors predictive of amputation were: missing clinic appointments (p = 0.0079); a high Charlson index (p = 0.03314); hypertension (p = 0.0216). No previous revascularisation was protective against amputation (p = 0.0035). However PAD was not seen to be statistically significant, although our results indicated a lower risk of amputation with no PAD. Overall, 34.9% (n = 58) of patients had good glycaemic control (HbA1c <58 mmol/mol) at baseline & 81.3% (n = 135) had improved their glycaemic control at their last follow up appointment. Conclusions: In this cohort poor glycaemic control, poor attendance, previous revascularisation & hypertension were associated with higher risk of amputation, with PAD showing a trend. Moreover, we demonstrated benefits in glycaemic control achieved by attending this DFC, which is likely to translate to longer term diabetes related health benefits

    Living (Rose-Bengal-stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea)

    Get PDF
    Rose-Bengal-stained foraminiferal assemblages (> 150 μm) were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during the RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained benthic foraminifera were investigated from two different size fractions (150–300 μm and > 300 μm). Stained foraminiferal densities were very high in the core of the OMZ (at 535 and 649 m) and decreased at deeper sites. The faunas (> 150 μm) were dominated (40–80 %) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ. These species are presently known only from the Arabian Sea. Because of their association with extremely low oxygen concentrations, these species may be good markers for very low oxygen concentrations, and could be used to reconstruct past OMZ variability in the Arabian Sea

    Foraminiferal biodiversity associated with cold-water coral carbonate mounds and open slope of SE Rockall Bank (Irish continental margin-NE Atlantic)

    Get PDF
    Cold-water coral (CWC) ecosystems are hotspots of macro- and microfaunal biodiversity and provide refuge for a wide variety of deep-sea species. We investigated how the abundance and biodiversity of 'live' (Rose Bengal stained) foraminifera varies with, and is related to, the occurrence of CWC on the Rockall Bank (NE Atlantic). Qualitative and quantitative analyses were performed on 21 replicate samples from 8 deep-sea stations, including 4 stations on CWC-covered carbonate mounds at depths of 567-657 m, and 4 stations on the adjacent slope at depths of 469-1958 m where CWC were absent. This sampling strategy enabled us to demonstrate that sediments surrounding the living CWC were characterised by higher foraminiferal abundance and biodiversity than open-slope sediments from the same area. A total of 163 foraminiferal species was identified. The dominant species in CWC sediments were: Spirillina vivipara, Allogromiid sp. 1. Globocassidulina subglobosa, Adercotryma wrighti, Eponides pusillus, Ehrenbergina carinata, Planulina ariminensis, Trochammina inflate and Paratrochammina challenged. Foraminifera were nearly absent in adjacent open slope areas subject to strong tidal currents and characterised by coarse grained deposits. We suggest that CWC create a heterogeneous three-dimensional substrate offering microhabitats to a diverse benthic foraminiferal community

    A proximal record of caldera-forming eruptions: the stratigraphy, eruptive history and collapse of the Palaeogene Arran caldera, western Scotland

    Get PDF
    Caldera-forming volcanic eruptions are among the most dangerous, and can generate extensive pyroclastic deposits and deliver ash into global atmospheric circulation systems. As calderas collapse, the eruptions can deposit thick proximal ignimbrite sequences and thinner ignimbrites more distally. However, the proximal record of caldera collapse is often obscured by later intrusions, volcanism, faults, alteration, water and sediments, which significantly limits our understanding of these eruptions. A Palaeogene caldera system in central Arran, western Scotland, preserves a rare proximal caldera-fill succession, the Arran Volcanic Formation. This caldera largely comprises highly heterogeneous ignimbrites and minor intra-caldera sedimentary rocks. The current level of erosion, and the general absence of faults, intrusions and sediments, allows a complex stratigraphy and collapse history to be determined, which can be linked to changing eruptive styles at a constantly evolving volcano. The first recorded phase was eruption of a homogeneous rhyolitic lava-like tuff, deposited from high temperature, high mass-flux pyroclastic density currents generated from low fountaining columns that retained heat. A succeeding phase of highly explosive Plinian eruptions, marked by a thick blanket of massive lapilli tuffs, was then followed by piston-like caldera collapse and erosion of steep caldera walls. Volcanism then became generally less explosive, with predominantly lava-like and eutaxitic tuffs and cognate spatter-rich agglomerates interbedded with non-homogenous lapilli tuffs. High topographic relief between distinct units indicate long periods of volcanic quiescence, during which erosive processes dominated. These periods are, in several places, marked by sedimentary rocks and evidence for surface water, which includes a localised basaltic-andesitic phreatomagmatic tuff. The caldera-forming eruptions recorded by the Arran Volcanic Formation provide an important insight into caldera collapse processes and proximal ignimbrite successions. The lack of thick autobreccias and lithic-rich lapilli- and block-layers indicates that subsidence was relatively gradual and incremental in this caldera, and not accompanied by catastrophic wall collapse during eruption. The relatively horizontal nature of the caldera-fill units and paucity of intra-caldera faulting indicate that piston subsidence was the dominant method of collapse, with a relatively coherent caldera floor bounded by a steeply dipping ring fault. Possible resurgence may have caused later doming of the floor and radial distribution of subsequent ignimbrites and sedimentary rocks. Our work emphasises the continued need for field studies of caldera volcanoes

    Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

    Get PDF
    Key Points: • Little deep water circulation changes in the past 240,000 years in the central South Pacific • Reduced North Atlantic Deep Water admixture during glacials to the Southern Ocean • South Pacific lithogenic material mainly sourced from SE Australia and South New Zealand The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific basin are exchanged. Here we reconstruct the deep-water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for εNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water (NADW) to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific

    Environment and Rural Affairs Monitoring & Modelling Programme – ERAMMP Report-26: ‘Quick Start’ Agricultural Small Sectors Modelling.

    Get PDF
    The potential impact of Brexit on the farming sector and wider environment is just one of the many challenges facing the Welsh Government. There are a range of decision and modelling tools which can be used to explore potential outcomes and the areas at risk where the environmental regulatory floor needs to be enhanced or social transition programmes put in place. To meet this challenge in Wales, a partnership between the Welsh Government, their stakeholders and a consortium of research organisations led by the UK Centre for Ecology and Hydrology (UKCEH) was formed. This partnership, called ERAMMP, (https://erammp.wales/en) combined expert knowledge and a range of decision and modelling tools to examine potential changes in agricultural land use that might result from Brexit, and to explore potential benefits of new land management options
    corecore