516 research outputs found

    Vaccination recommendations for adult patients with autoimmune inflammatory rheumatic diseases

    Get PDF
    BACKGROUND: The number of individuals with autoimmune inflammatory rheumatic diseases (AIIRDs) treated with immunosuppressive drugs is increasing steadily. The variety of immunosuppressive drugs and, in particular, biological therapies is also rising. The immunosuppressants, as well as the AIIRD itself, increase the risk of infection in this population. Thus, preventing infections by means of vaccination is of utmost importance. New Swiss vaccination recommendations for AIIRD patients were initiated by the Swiss Federal Office of Public Health and prepared by a working group of the Federal Commission for Vaccination Issues as well as by consultation of international experts. METHODS: A literature search was performed in electronic databases (Cochrane, Medline, PubMed, Embase). In addition, unpublished literature was identified through a targeted website search of relevant organisations and international conferences dealing with vaccination, infectious diseases and rheumatology. RESULTS: Although data are scarce, the following main points were retrieved from the literature. Inactivated vaccines are safe, but their immunogenicity may be reduced in AIIRD patients, especially if they are under immunosuppressive therapy. Rituximab and abatacept appear to reduce significantly immune responses after vaccination. Live vaccines are generally contraindicated under immunosuppressive therapy owing to safety concerns. Specific exceptions, as well as time intervals for the administration of live vaccines after interruption of an immunosuppressive therapy, have been formulated in this article. CONCLUSION: More evidence regarding the immunogenicity and safety of vaccinations in AIIRD patients under various therapies is needed. Vaccination recommendations should be updated on a regular basis, as more scientific data will become available

    Anatomical Step-by-Step Dissection of Complex Skull Base Approaches for Trainees: Surgical Anatomy of the Endoscopic Endonasal Approach to the Sellar and Parasellar Regions

    Get PDF
    Introduction Surgery of the sellar and parasellar regions can be challenging due to the complexity of neurovascular relationships. The main goal of this study is to develop an educational resource to help trainees understand the pertinent anatomy and procedural steps of the endoscopic endonasal approaches (EEAs) to the sellar and parasellar regions. Methods Ten formalin-fixed latex-injected specimens were dissected. Endoscopic endonasal transsphenoidal transsellar, transtuberculum-transplanum, and transcavernous approaches were performed by a neurosurgery trainee, under supervision from the senior authors and a PhD in anatomy with advanced neuroanatomy experience. Dissections were supplemented with representative case applications. Results Endoscopic endonasal transsphenoidal approaches afford excellent direct access to sellar and parasellar regions. After a wide sphenoidotomy, a limited sellar osteotomy opens the space to sellar region and medial portion of the cavernous sinus. To reach the suprasellar space (infrachiasmatic and suprachiasmatic corridors), a transplanum-prechiasmatic sulcus-transtuberculum adjunct is needed. The transcavernous approach gains access to the contents of the cavernous sinus and both medial (posterior clinoid and interpeduncular cistern) and lateral structures of the retrosellar region. Conclusion The anatomical understanding and technical skills required to confidently remove skull base lesions with EEAs are traditionally gained after years of specialized training. We comprehensively describe EEAs to sellar and parasellar regions for trainees to build knowledge and improve familiarity with these approaches and facilitate comprehension and learning in both the surgical anatomy laboratory and the operating room

    Large-scale analysis of Drosophila core promoter function using synthetic promoters

    Get PDF
    The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it “computes” expression remains poorly understood. To dissect its function, we carried out a comprehensive structure–function analysis in Drosophila. First, we performed a genome-wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture. We then measured synthetic promoters’ activities of ~3,000 mutational variants with and without an external stimulus (hormonal activation), at large scale and with high accuracy using robotics and a dual luciferase reporter assay. We observed a strong impact on activity of the different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, nucleosome positioning, and flanking sequences. A linear combination of the individual motif features largely accounts for the combinatorial effects on core promoter activity. These findings shed new light on the quantitative assessment of gene expression in metazoans

    Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity

    Get PDF
    The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al
    • 

    corecore