1,599 research outputs found

    Chemistry in Evaporating Ices: Unexplored Territory

    Full text link
    We suggest that three-body chemistry may occur in warm high density gas evaporating in transient co\textendash desorption events on interstellar ices. Using a highly idealised computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.Comment: Accepted in Ap

    Silica grain catalysis of methanol formation

    Get PDF
    The specific catalytic effect of a silica grain on the formation of methanol via the sequential addition of H atoms to CO adsorbed on the surface is investigated. A negatively charged defect on a siliceous edingtonite surface is found to reduce the gas phase barriers for the H + COads and H + H2C=O-ads reactions by 770 and 399 K, respectively, when compared to the same reactions in the gas phase. The catalytic effect of negatively charged surface sites could also be applicable to the hydrogenation of other adsorbed unsaturated species. However, the activation energies on the surface defect are still too large (1150 and 2230 K) for CH3OH to form efficiently at 10-20 K in the interstellar medium via a classical mechanism. It is therefore suggested that quantum mechanical tunnelling through the activation barrier is required for these hydrogen addition reactions to proceed at such temperatures. The calculations show that because the adsorption energies of CO and H2C=O on the negatively charged defect are substantial, CH3OH may form efficiently during the warm-up period in star-forming regions

    Pathways of airway oxidant formation by house dust mite allergens and viral RNA converge through myosin motors, pannexons and Toll-like receptor 4.

    Get PDF
    Introduction Intracellular reactive oxidant species (ROS) are generated in human airway epithelial cells by the prothrombinase action of Group 1 house dust mite (HDM) allergens and by ligation of viral RNA sensor Toll‐like receptors (TLRs). We explored signaling convergence between HDM allergens and TLRs in ROS generation because epithelial cells form the primary barrier against inhaled substances and dictate host responses to allergens and viruses. Methods ROS formation by Calu‐3 human airway cells was studied by measuring dihydrorhodamine 123 oxidation after activation by polyinosinic:polycytidylic acid (to activate TLR3), CL097 (to activate TLR7), a natural mixture of HDM allergens, or BzATP. Results TLR4 activation was identified as an indispensable response element for all stimuli, operating downstream from myosin motor activation, pannexon gating for ATP release and the endogenous activation of prothrombin. Exogenous prothrombin activation by HDM allergens was prevented by SGUL 1733, a novel inhibitor of the proteolytic activity of Group 1 HDM allergens, which thus prevented TLR4 from being activated at source. Conclusions Our data identify for the first time that endogenously‐generated prothrombin and TLR4 form a shared effector mechanism essential to intracellular ROS generation activated by a group 1 HDM allergen (itself a prothrombinase) or by ligation of viral RNA‐sensing TLRs. These stimuli operate a confluent signaling pathway in which myosin motors, gating of pannexons, and ADAM 10 lead to prothrombin‐dependent activation of TLR4 with a recycling activation of pannexons

    Giving hope, ticking boxes or securing services? A qualitative study of respiratory physiotherapists' views on goal-setting with people with chronic obstructive pulmonary disease.

    Get PDF
    OBJECTIVE: To explore respiratory physiotherapists' views and experiences of using goal-setting with people with chronic obstructive pulmonary disease in rehabilitation settings. PARTICIPANTS: A total of 17 respiratory physiotherapists with â©Ÿ12 months current or previous experience of working with patients with chronic obstructive pulmonary disease in a non-acute setting. Participants were diverse in relation to age (25-49 years), sex (13 women), experience (Agenda for Change bands 6-8) and geographic location. METHOD: Data were collected via face-to-face qualitative in-depth interviews (40-70 minutes) using a semi-structured interview guide. Interview locations were selected by participants (included participants' homes, public places and University). Interviews followed an interview guide, were audio-recorded and transcribed verbatim. DATA ANALYSIS: Data were analysed using thematic analysis; constant comparison was made within and between accounts, and negative case analysis was used. RESULTS: Three themes emerged through the process of analysis: (1) 'Explaining goal-setting'; (2) 'Working with goals'; and (3) 'Influences on collaborative goal-setting'. Goal-setting practices among respiratory physiotherapists varied considerably. Collaborative goal-setting was described as challenging and was sometimes driven by service need rather than patient values. Lack of training in collaborative goal-setting at both undergraduate and postgraduate level was also seen as an issue. CONCLUSION: Respiratory physiotherapists reflected uncertainties around the use of goal-setting in their practice, and conflict between patients' goals and organisational demands. This work highlights a need for wider discussion to clarify the purpose and implementation of goal-setting in respiratory rehabilitation

    FDTD Simulation of Thermal Noise in Open Cavities

    Full text link
    A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes.Comment: 8 pages, 7 figure

    Space-by-time manifold representation of dynamic facial expressions for emotion categorization

    Get PDF
    Visual categorization is the brain computation that reduces high-dimensional information in the visual environment into a smaller set of meaningful categories. An important problem in visual neuroscience is to identify the visual information that the brain must represent and then use to categorize visual inputs. Here we introduce a new mathematical formalism—termed space-by-time manifold decomposition—that describes this information as a low-dimensional manifold separable in space and time. We use this decomposition to characterize the representations used by observers to categorize the six classic facial expressions of emotion (happy, surprise, fear, disgust, anger, and sad). By means of a Generative Face Grammar, we presented random dynamic facial movements on each experimental trial and used subjective human perception to identify the facial movements that correlate with each emotion category. When the random movements projected onto the categorization manifold region corresponding to one of the emotion categories, observers categorized the stimulus accordingly; otherwise they selected “other.” Using this information, we determined both the Action Unit and temporal components whose linear combinations lead to reliable categorization of each emotion. In a validation experiment, we confirmed the psychological validity of the resulting space-by-time manifold representation. Finally, we demonstrated the importance of temporal sequencing for accurate emotion categorization and identified the temporal dynamics of Action Unit components that cause typical confusions between specific emotions (e.g., fear and surprise) as well as those resolving these confusions

    TIMASSS : The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey: Tentative Detection of Deuterated Methyl Formate (DCOOCH3)

    Full text link
    High deuterium fractionation is observed in various types of environment such as prestellar cores, hot cores and hot corinos. It has proven to be an efficient probe to study the physical and chemical conditions of these environments. The study of the deuteration of different molecules helps us to understand their formation. This is especially interesting for complex molecules such as methanol and bigger molecules for which it may allow to differentiate between gas-phase and solid-state formation pathways. Methanol exhibits a high deuterium fractionation in hot corinos. Since CH3OH is thought to be a precursor of methyl formate we expect that deuterated methyl formate is produced in such environments. We have searched for the singly-deuterated isotopologue of methyl formate, DCOOCH3, in IRAS 16293-2422, a hot corino well-known for its high degree of methanol deuteration. We have used the IRAM/JCMT unbiased spectral survey of IRAS 16293-2422 which allows us to search for the DCOOCH3 rotational transitions within the survey spectral range (80-280 GHz, 328-366 GHz). The expected emission of deuterated methyl formate is modelled at LTE and compared with the observations.} We have tentatively detected DCOOCH3 in the protostar IRAS 16293-2422. We assign eight lines detected in the IRAM survey to DCOOCH3. Three of these lines are affected by blending problems and one line is affected by calibration uncertainties, nevertheless the LTE emission model is compatible with the observations. A simple LTE modelling of the two cores in IRAS 16293-2422, based on a previous interferometric study of HCOOCH3, allows us to estimate the amount of DCOOCH3 in IRAS 16293-2422. Adopting an excitation temperature of 100 K and a source size of 2\arcsec and 1\farcs5 for the A and B cores, respectively, we find that N(A,DCOOCH3) = N(B,DCOOCH3) ~ 6.10^14 /cm2. The derived deuterium fractionation is ~ 15%, consistent with values for other deuterated species in this source and much greater than that expected from the deuterium cosmic abundance. DCOOCH3, if its tentative detection is confirmed, should now be considered in theoretical models that study complex molecule formation and their deuteration mechanisms. Experimental work is also needed to investigate the different chemical routes leading to the formation of deuterated methyl formate
    • 

    corecore