25 research outputs found

    A Comparison of Shiga-Toxin 2 Bacteriophage from Classical Enterohemorrhagic Escherichia coli Serotypes and the German E. coli O104:H4 Outbreak Strain

    Get PDF
    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors

    Global phylogeography and ancient evolution of the widespread human gut virus crAssphage

    Full text link
    Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome

    Sponges and coral microbiome 1/3

    No full text
    This repository contain data generated by Illumina MiSeq of different invertabrates. It is divided in 3 different data sets (see sample_data file for indentification of Sponge Samples )THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    sponge and coral microbiome_3/3

    No full text
    Additional dataTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    sponge and coral microbiome_2/3

    No full text
    Samples from the second runTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Neoscardovia arbecensis gen. nov., sp nov., isolated from porcine slurries

    No full text
    Three Gram-positive, anaerobic, pleomorphic strains (PG10T, PG18 and PG22), were selected among five strains isolated from pig slurries while searching for host specific bifidobacteria to track the source of fecal pollution in water. Analysis of the 16S rRNA gene sequence showed a maximum identity of 94% to various species of the family Bifidobacteriaceae. However, phylogenetic analyses of 16S rRNA and HSP60 gene sequences revealed a closer relationship of these strains to members of the recently described Aeriscardovia, Parascardovia and Scardovia genera, than to other Bifidobacterium species. The names Neoscardovia gen. nov. and Neoscardovia arbecensis sp. nov. are proposed for a new genus and for the first species belonging to this genus, respectively, and for which PG10T (CECT 8111T, DSM 25737T) was designated as the type strain. This new species should be placed in the Bifidobacteriaceae family within the class Actinobacteria, with Aeriscardovia aeriphila being the closest relative. The prevailing cellular fatty acids were C16:0 and C18:1ω9c, and the major polar lipids consisted of a variety of glycolipids, diphosphatidyl glycerol, two unidentified phospholipids, and phosphatidyl glycerol. The peptidoglycan structure was A1γ meso-Dpm-direct. The GenBank accession numbers for the 16S rRNA gene and HSP60 gene sequences of strains PG10T, PG18 and PG22 are JF519691, JF519693, JQ767128 and JQ767130, JQ767131, JQ767133, respectively

    A Simple and Fast Method for Discrimination of Phage and Antibiotic Contaminants in Raw Milk By Using Raman Spectroscopy

    No full text
    Phage and antibiotic in raw milk poses significant risks for starter culture activity in fermented products. Therefore, rapid detection of phage and antibiotic contaminations in raw milk is a crucial process in dairy science. For this purpose, a preliminary novel method for detection of phage and antibiotic was developed by using Raman spectroscopy. Streptococcus thermophilus phages and ampicillin which are quite important elements in dairy industry were used as model. The phage and antibiotic samples were added to raw milk separately, and Raman measurements were carried out. The obtained spectra were processed with a chemometric method. In this study, it has been demonstrated that the presence of phage has a titer sufficient to stop the fermentation (10(7) pfu/ml), and antibiotic in a concentration which inhibits the growth of starter cultures (0.5 A mu g/ml) in raw milk could be discriminated through Raman spectroscopy with a short analysis time (30 min).Wo
    corecore