41 research outputs found

    Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review

    Get PDF
    The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG

    Plastic accumulation in the Mediterranean Sea

    Get PDF
    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region

    Spatial differences in fatigue-associated electromyographic behaviour of the human first dorsal interosseus muscle.

    No full text
    1. Fatigue-associated electromyographic (EMG) reactions of intrinsic hand muscles were studied during maintained isometric voluntary contractions of normal subjects. Most measurements concerned actions of the first dorsal interosseus (FDI). In a smaller number of subjects, complementary measurements were obtained for adductor pollicis (AP). 2. Measurements were made of isometric force (thumb adduction, index finger abduction and flexion) and of surface EMG amplitudes (AP and FDI) after rectification and smoothing (rsEMG). 3. In the analysis of fatigue, the subjects were required to maintain a steady isometric force (index finger abduction or thumb adduction) of half their maximum voluntary contraction (1/2MVC test) for as long as possible. Average endurance times were 88 +/- 19 s (mean +/- S.D.) for FDI and 119 +/- 29 s for AP (Student's t test, P < 0.02). 4. Pronounced differences in fatigue-associated EMG behaviour were observed between AP and FDI. In AP the reaction was as expected: a rise of EMG during maintained force (mean rsEMG at end of fatigue test/mean rsEMG at start of test (rsEMG-FI): 181 +/- 64%). In FDI this reaction was seen in half of the recorded cases, the remainder displaying bidirectional changes or a more or less marked decrease of EMG during the endurance task (mean for all cases together: rsEMG-FI, 103 +/- 15%; difference between AP vs. FDI significant, P < 0.01). 5. The unexpected EMG variability of the FDI reactions was further analysed with multiple bipolar recordings of surface EMG. For all the four thoroughly studied subjects, recordings were obtained which showed simultaneously occurring EMG changes in opposite directions (decrease and increase) at different sites of FDI while force was kept constant at 50% of the maximum voluntary contraction (MVC). 6. Further observations on FDI showed that EMGs simultaneously obtained from different recording sites could show dramatic differences in their responses depending on 'synergistic context' (e.g. in relation to changes in index finger extension force during maintained abduction at 50% MVC). Evidence for 'task switching' (shift in rsEMG distribution, shift in hand muscle synergy) was frequently observed during the performance of the 1/2MVC test. 7. The results indicate that FDI is not handled in a topographically homogeneous manner during the execution of an isometric constant force endurance test. Furthermore, the results suggest that this seemingly simple motor performance can be executed in several alternative manners associated with the activation of different muscle synergies and with different distributions of activity within the FDI

    Human flexor reflex modulation during cycling

    No full text

    The Influence of Channel Deepening on Tides, River Discharge Effects, and Storm Surge

    Get PDF
    We combine archival research, semi-analytical models, and numerical simulations to address the following question: how do changes to channel geometry alter tidal properties and flood dynamics in a hyposynchronous, strongly frictional estuary with a landward decay in tidal amplitudes? Records in the Saint Johns River Estuary since the 1890s show that tidal range has doubled in Jacksonville, Florida. Near the estuary inlet, tidal discharge approximately doubled but tidal amplitudes increased only ~6%. Modeling shows that increased shipping channel depths from 5-6 to ~13m drove the observed changes, with other factors like channel shortening and width reduction producing comparatively minor effects. Tidal amplitude increases are spatially variable, with a maximum change 20-25 km from the estuary inlet; tidal theory suggests that increases in amplitude approximately follow , where x is the distance from the ocean and is a damping coefficient. Tidal changes are a predictor of altered surge dynamics: Numerical modeling of hurricane Irma under 1898 and 2017 bathymetric conditions confirms that both tidal and storm surge amplitudes are larger today, with a similar spatial pattern. Nonetheless, peak water levels are simulated to be larger under 1898 bathymetry. The cause is likely the record river discharge observed during the storm; as suggested by a subtidal water-level model, channel deepening since 1898 appears to have reduced the average surface slope required to drain both mean river flow and storm flows towards the ocean. Nonetheless, results suggest an increased vulnerability to storms with less river flow, but larger storm surge
    corecore