465 research outputs found
On the drivers of UK direct investment in the Spanish regions: A spatial Durbin approach
This paper empirically examines the key factors driving UK direct investment in the Spanish regions over the period 2000-2016 and, consequently, tries to unveil its main motivation. Applying a spatial Durbin panel model to capture spatial linkages, the results point to the existence of complementarity between the FDI received by a region and that of the remaining ones. This outcome, along with a positive and statistically significant spillover effect of market potential, reveals that complex-vertical FDI motivation with agglomeration economies prevails among UK MNEs investing in Spain. Additionally, our findings unveil the role played by some other FDI drivers, such as wages and infrastructure. Furthermore, the paper is unique in decomposing the average direct and spillover effects by region and pairs of regions, so that remarkable differences can be identified. This breakdown has strong significance from a policy perspective since it can guide regional policy makers. In short, our findings point out to the fact that FDI policy should be jointly designed by those regions presenting strong bilateral spillover effects. Thus, greater cooperation among policy makers would be welcom
The International-Trade Network: Gravity Equations and Topological Properties
This paper begins to explore the determinants of the topological properties
of the international - trade network (ITN). We fit bilateral-trade flows using
a standard gravity equation to build a "residual" ITN where trade-link weights
are depurated from geographical distance, size, border effects, trade
agreements, and so on. We then compare the topological properties of the
original and residual ITNs. We find that the residual ITN displays, unlike the
original one, marked signatures of a complex system, and is characterized by a
very different topological architecture. Whereas the original ITN is
geographically clustered and organized around a few large-sized hubs, the
residual ITN displays many small-sized but trade-oriented countries that,
independently of their geographical position, either play the role of local
hubs or attract large and rich countries in relatively complex
trade-interaction patterns
The rise of China in the international trade network: a community core detection approach
Theory of complex networks proved successful in the description of a variety of static networks ranging from biology to computer and social sciences and to economics and
finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995-2011. We find rich dynamics over time both inter- and intra-communities. Most importantly, we have a multilevel description of the
evolution where the global dynamics (i.e., communities disappear or reemerge) tend to be correlated with the regional dynamics (i.e., community core changes between
community members). In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. Moreover,
simulation results show that the global dynamics can be generated by a preferential attachment mechanism both inter- and intra- communities
Exploring diurnal variation using piecewise linear splines:an example using blood pressure
Background: There are many examples of physiological processes that follow a circadian cycle and researchers are interested in alternative methods to illustrate and quantify this diurnal variation. Circadian blood pressure (BP) deserves additional attention given uncertainty relating to the prognostic significance of BP variability in relation to cardiovascular disease. However, the majority of studies exploring variability in ambulatory blood pressure monitoring (ABPM) collapse the data into single readings ignoring the temporal nature of the data. Advanced statistical techniques are required to explore complete variation over 24 h.
Methods: We use piecewise linear splines in a mixed-effects model with a constraint to ensure periodicity as a novel application for modelling daily blood pressure. Data from the Mitchelstown Study, a cross-sectional study of Irish adults aged 47–73 years (n = 2047) was utilized. A subsample (1207) underwent 24-h ABPM. We compared patterns between those with and without evidence of subclinical target organ damage (microalbuminuria). Results: We were able to quantify the steepest rise and fall in SBP, which occurred just after waking (2.23 mmHg/30 min) and immediately after falling asleep (−1.93 mmHg/30 min) respectively. The variation about an individual’s trajectory over 24 h was 12.3 mmHg (standard deviation). On average those with microalbuminuria were found to have significantly higher SBP (7.6 mmHg, 95% CI 5.0–10.1) after adjustment for age, sex and BMI. Including an interaction term between each linear spline and microalbuminuria did not improve model fit.
Conclusion: We have introduced a practical method for the analysis of ABPM where we can determine the rate of increase or decrease for different periods of the day. This may be particularly useful in examining chronotherapy effects of antihypertensive medication. It offers new measures of short-term BP variability as we can quantify the variation about an individual’s trajectory but also allows examination of the variation in slopes between individuals (random-effects)
Sheddable Coatings for Long-Circulating Nanoparticles
Nanoparticles, such as liposomes, polymeric micelles, lipoplexes and polyplexes are frequently studied as targeted drug carrier systems. The ability of these particles to circulate in the bloodstream for a prolonged period of time is often a prerequisite for successful targeted delivery. To achieve this, hydrophilic ‘stealth’ polymers, such as poly(ethylene glycol) (PEG), are used as coating materials. Such polymers shield the particle surface and thereby reduce opsonization by blood proteins and uptake by macrophages of the mononuclear phagocyte system. Yet, after localizing in the pathological site, nanoparticles should deliver their contents in an efficient manner to achieve a sufficient therapeutic response. The polymer coating, however, may hinder drug release and target cell interaction and can therefore be an obstacle in the realization of the therapeutic response. Attempts have been made to enhance the therapeutic efficacy of sterically stabilized nanoparticles by means of shedding, i.e. a loss of the coating after arrival at the target site. Such an ‘unmasking’ process may facilitate drug release and/or target cell interaction processes. This review presents an overview of the literature regarding different shedding strategies that have been investigated for the preparation of sterically stabilized nanoparticulates. Detach mechanisms and stimuli that have been used are described
Genome wide association for substance dependence: convergent results from epidemiologic and research volunteer samples
<p>Abstract</p> <p>Background</p> <p>Dependences on addictive substances are substantially-heritable complex disorders whose molecular genetic bases have been partially elucidated by studies that have largely focused on research volunteers, including those recruited in Baltimore. Maryland. Subjects recruited from the Baltimore site of the Epidemiological Catchment Area (ECA) study provide a potentially-useful comparison group for possible confounding features that might arise from selecting research volunteer samples of substance dependent and control individuals. We now report novel SNP (single nucleotide polymorphism) genome wide association (GWA) results for vulnerability to substance dependence in ECA participants, who were initially ascertained as members of a probability sample from Baltimore, and compare the results to those from ethnically-matched Baltimore research volunteers.</p> <p>Results</p> <p>We identify substantial overlap between the home address zip codes reported by members of these two samples. We find overlapping clusters of SNPs whose allele frequencies differ with nominal significance between substance dependent <it>vs </it>control individuals in both samples. These overlapping clusters of nominally-positive SNPs identify 172 genes in ways that are never found by chance in Monte Carlo simulation studies. Comparison with data from human expressed sequence tags suggests that these genes are expressed in brain, especially in hippocampus and amygdala, to extents that are greater than chance.</p> <p>Conclusion</p> <p>The convergent results from these probability sample and research volunteer sample datasets support prior genome wide association results. They fail to support the idea that large portions of the molecular genetic results for vulnerability to substance dependence derive from factors that are limited to research volunteers.</p
- …