7,687 research outputs found
Velocity weakening and possibility of aftershocks in nanofriction experiments
We study the frictional behavior of small contacts as those realized in the
atomic force microscope and other experimental setups, in the framework of
generalized Prandtl-Tomlinson models. Particular attention is paid to
mechanisms that generate velocity weakening, namely a decreasing average
friction force with the relative sliding velocity.The mechanisms studied model
the possibility of viscous relaxation, or aging effects in the contact. It is
found that, in addition to producing velocity weakening, these mechanisms can
also produce aftershocks at sufficiently low sliding velocities. This provides
a remarkable analogy at the microscale, of friction properties at the
macroscale, where aftershocks and velocity weakening are two fundamental
features of seismic phenomena.Comment: 8 pages, 7 figure
Nitrogen hydrides in interstellar gas: Herschel/HIFI observations towards G10.6-0.4 (W31C)
The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards
G10.6−0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report observations of absorption in NH N = 1 ← 0,
J = 2 ← 1 and ortho-NH_2 1_(1,1) ← 0_(0,0). We also observed ortho-NH_3 1_0 ← 0_0, and 2_0 ← 1_0, para-NH_3 2_1 ← 1_1, and searched unsuccessfully for
NH^+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material
over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total
column densities over the velocity range 11−54 km s^(−1) are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen,
approximately 6 × 10^(−9), 3 × 10^(−9), and 3 × 10^(−9) for NH, NH_2, and NH_3, respectively. These abundances are discussed with reference to models of
gas-phase and surface chemistry
Political institutions and debt crises
This paper shows that political institutions matter in explaining defaults on external and domestic debt obligations. We explore a large number of political and macroeconomic variables using a non-parametric technique to predict safety from default. The advantage of this technique is that it is able to identify patterns in the data that are not captured in standard probit analysis. We find that political factors matter, and do so in different ways for democratic and non-democratic regimes, and for domestic and external debt. In democracies, a parliamentary system or sufficient checks and balances almost guarantee the absence of default on external debt when economic fundamentals or liquidity are sufficiently strong. In dictatorships, high stability and tenure play a similar role for default on domestic debt
Fluid flow at the interface between elastic solids with randomly rough surfaces
I study fluid flow at the interface between elastic solids with randomly
rough surfaces. I use the contact mechanics model of Persson to take into
account the elastic interaction between the solid walls and the Bruggeman
effective medium theory to account for the influence of the disorder on the
fluid flow. I calculate the flow tensor which determines the pressure flow
factor and, e.g., the leak-rate of static seals. I show how the perturbation
treatment of Tripp can be extended to arbitrary order in the ratio between the
root-mean-square roughness amplitude and the average interfacial surface
separation. I introduce a matrix D(Zeta), determined by the surface roughness
power spectrum, which can be used to describe the anisotropy of the surface at
any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta)
(generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure
Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer
We study the response of an adsorbed monolayer under a driving force as a
model of sliding friction phenomena between two crystalline surfaces with a
boundary lubrication layer. Using Langevin-dynamics simulation, we determine
the nonlinear response in the direction transverse to a high symmetry direction
along which the layer is already sliding. We find that below a finite
transition temperature, there exist a critical depinning force and hysteresis
effects in the transverse response in the dynamical state when the adlayer is
sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Rubber friction: role of the flash temperature
When a rubber block is sliding on a hard rough substrate, the substrate
asperities will exert time-dependent deformations of the rubber surface
resulting in viscoelastic energy dissipation in the rubber, which gives a
contribution to the sliding friction. Most surfaces of solids have roughness on
many different length scales, and when calculating the friction force it is
necessary to include the viscoelastic deformations on all length scales. The
energy dissipation will result in local heating of the rubber. Since the
viscoelastic properties of rubber-like materials are extremely strongly
temperature dependent, it is necessary to include the local temperature
increase in the analysis. At very low sliding velocity the temperature increase
is negligible because of heat diffusion, but already for velocities of order
0.01 m/s the local heating may be very important. Here I study the influence of
the local heating on the rubber friction, and I show that in a typical case the
temperature increase results in a decrease in rubber friction with increasing
sliding velocity for v > 0.01 m/s. This may result in stick-slip instabilities,
and is of crucial importance in many practical applications, e.g., for the
tire-road friction, and in particular for ABS-breaking systems.Comment: 22 pages, 27 figure
Nonlinear sliding friction of adsorbed overlayers on disordered substrates
We study the response of an adsorbed monolayer on a disordered substrate
under a driving force using Brownian molecular-dynamics simulation. We find
that the sharp longitudinal and transverse depinning transitions with
hysteresis still persist in the presence of weak disorder. However, the
transitions are smeared out in the strong disorder limit. The theoretical
results here provide a natural explanation for the recent data for the
depinning transition of Kr films on gold substrate.Comment: 8 pages, 8 figs, to appear in Phys. Rev.
Dynamics of quantum systems
A relation between the eigenvalues of an effective Hamilton operator and the
poles of the matrix is derived which holds for isolated as well as for
overlapping resonance states. The system may be a many-particle quantum system
with two-body forces between the constituents or it may be a quantum billiard
without any two-body forces. Avoided crossings of discrete states as well as of
resonance states are traced back to the existence of branch points in the
complex plane. Under certain conditions, these branch points appear as double
poles of the matrix. They influence the dynamics of open as well as of
closed quantum systems. The dynamics of the two-level system is studied in
detail analytically as well as numerically.Comment: 21 pages 7 figure
Cyclotron resonance lineshape in a Wigner crystal
The cyclotron resonance absorption spectrum in a Wigner crystal is
calculated. Effects of spin-splitting are modelled by substitutional disorder,
and calculated in the coherent potential approximation. Due to the increasing
strength of the dipole-dipole interaction, the results show a crossover from a
double-peak spectrum at small filling factors to a single-peak spectrum at
filling factors \agt 1/6. Radiation damping and magnetophonon scattering can
also influence the cyclotron resonance. The results are in very good agreement
with experiments.Comment: 4 pages REVTEX, attempt to append 3 figures that seem to have been
lost last tim
Laser-driven plasma waves in capillary tubes
The excitation of plasma waves over a length of up to 8 centimeters is, for
the first time, demon- strated using laser guiding of intense laser pulses
through hydrogen filled glass capillary tubes. The plasma waves are diagnosed
by spectral analysis of the transmitted laser radiation. The dependence of the
spectral redshift, measured as a function of filling pressure, capillary tube
length and incident laser energy, is in excellent agreement with simulation
results. The longitudinal accelerating field inferred from the simulations is
in the range 1 -10 GV/m
- …