1,658 research outputs found

    Properties of the chiral spin liquid state in generalized spin ladders

    Full text link
    We study zero temperature properties of a system of two coupled quantum spin chains subject to fields explicitly breaking time reversal symmetry and parity. Suitable choice of the strength of these fields gives a model soluble by Bethe Ansatz methods which allows to determine the complete magnetic phase diagram of the system and the asymptotics of correlation functions from the finite size spectrum. The chiral properties of the system for both the integrable and the nonintegrable case are studied using numerical techniques.Comment: 19 pages, 9eps figures, Late

    Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain

    Get PDF
    In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we re-examine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior cannot be extracted from these finite-size systems with open boundary conditions.Comment: 8 pages, 10 figures; v2: final version, references and Fig. 8 adde

    Spectral Features of the Proximity Effect

    Full text link
    We calculate the local density of states (LDOS) of a superconductor-normal metal sandwich at arbitrary impurity concentration. The presence of the superconductor induces a gap in the normal metal spectrum that is proportional to the inverse of the elastic mean free path ll for rather clean systems. For a mean free path much shorter than the thickness of the normal metal, we find a gap size proportional to ll that approaches the behavior predicted by the Usadel equation (diffusive limit).Comment: LT22 proceeding

    Anderson-like impurity in the one-dimensional t-J model: formation of local states and magnetic behaviour

    Get PDF
    We consider an integrable model describing an Anderson-like impurity coupled to an open tt--JJ chain. Both the hybridization (i.e. its coupling to bulk chain) and the local spectrum can be controlled without breaking the integrability of the model. As the hybridization is varied, holon and spinon bound states appear in the many body ground state. Based on the exact solution we study the state of the impurity and its contribution to thermodynamic quantities as a function of an applied magnetic field. Kondo behaviour in the magnetic response of the impurity can be observed provided that its parameters have been adjusted properly to the energy scales of the holon and spinon excitations of the one-dimensional bulk.Comment: 32 pages, 11 figure

    Distribution of parametric conductance derivatives of a quantum dot

    Get PDF
    The conductance G of a quantum dot with single-mode ballistic point contacts depends sensitively on external parameters X, such as gate voltage and magnetic field. We calculate the joint distribution of G and dG/dX by relating it to the distribution of the Wigner-Smith time-delay matrix of a chaotic system. The distribution of dG/dX has a singularity at zero and algebraic tails. While G and dG/dX are correlated, the ratio of dG/dX and G(1−G)\sqrt{G(1-G)} is independent of G. Coulomb interactions change the distribution of dG/dX, by inducing a transition from the grand-canonical to the canonical ensemble. All these predictions can be tested in semiconductor microstructures or microwave cavities.Comment: 4 pages, RevTeX, 3 figure

    Doping Induced Magnetization Plateaus

    Get PDF
    The low temperature magnetization process of antiferromagnetic spin-S chains doped with mobile spin-(S-1/2) carriers is studied in an exactly solvable model. For sufficiently high magnetic fields the system is in a metallic phase with a finite gap for magnetic excitations. In this phase which exists for a large range of carrier concentrations x the zero temperature magnetization is determined by x alone. This leads to plateaus in the magnetization curve at a tunable fraction of the saturation magnetization. The critical behaviour at the edges of these plateaus is studied in detail.Comment: RevTeX, 4 pp. incl. 3 figure

    Effective σ\sigma Model Formulation for Two Interacting Electrons in a Disordered Metal

    Full text link
    We derive an analytical theory for two interacting electrons in a dd--dimensional random potential. Our treatment is based on an effective random matrix Hamiltonian. After mapping the problem on a nonlinear σ\sigma model, we exploit similarities with the theory of disordered metals to identify a scaling parameter, investigate the level correlation function, and study the transport properties of the system. In agreement with recent numerical work we find that pair propagation is subdiffusive and that the pair size grows logarithmically with time.Comment: 4 pages, revtex, no figure

    Phase diagram of the su(8) quantum spin tube

    Full text link
    We calculate the phase diagram of an integrable anisotropic 3-leg quantum spin tube connected to the su(8) algebra. We find several quantum phase transitions for antiferromagnetic rung couplings. Their locations are calculated exactly from the Bethe Ansatz solution and we discuss the nature of each of the different phases.Comment: 10 pages, RevTeX, 1 postscript figur

    Coherent propagation of interacting particles in a random potential: the Mechanism of enhancement

    Full text link
    Coherent propagation of two interacting particles in 1d1d weak random potential is considered. An accurate estimate of the matrix element of interaction in the basis of localized states leads to mapping onto the relevant matrix model. This mapping allows to clarify the mechanism of enhancement of the localization length which turns out to be rather different from the one considered in the literature. Although the existence of enhancement is transparent, an analytical solution of the matrix model was found only for very short samples. For a more realistic situation numerical simulations were performed. The result of these simulations is consistent with l_{2}/l_1 \sim l_1^{\gamma} , where l1l_1 and l2l_2 are the single and two particle localization lengths and the exponent γ\gamma depends on the strength of the interaction. In particular, in the limit of strong particle-particle interaction there is no enhancement of the coherent propagation at all (l2≈l1l_{2} \approx l_1).Comment: 23 pages, REVTEX, 3 eps figures, improved version accepted for publication in Phys. Rev.
    • …
    corecore