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The low-temperature magnetization process of antiferromagnetic spin-S chains doped with mobile
spin-�S 2 1�2� carriers is studied in an exactly solvable model. For sufficiently high magnetic fields the
system is in a metallic phase with a finite gap for magnetic excitations. In this phase, which exists for
a large range of carrier concentrations x, the zero-temperature magnetization is determined by x alone.
This leads to plateaus in the magnetization curve at a tunable fraction of the saturation magnetization.
The critical behavior at the edges of these plateaus is studied in detail.

PACS numbers: 75.10.Jm, 71.10.Pm, 75.10.Lp
Synthetization of new magnetic materials and availabil-
ity of very high magnetic fields provide new possibili-
ties to study the magnetization process of low-dimensional
quantum spin systems. In particular, so-called spin liquids
realized in quasi-one dimensional antiferromagnetic sys-
tems such as spin chains, spin ladders, and exchange-
alternating spin chains, attract much interest at present due
to the possible occurrence of magnetization plateaus as-
sociated with gapped excitations. In addition to saturated
magnetization Ms, such plateaus, i.e., regions where the
magnetization does not depend on the magnetic field for
sufficiently low temperatures, are admissible from topo-
logical considerations at certain fractions of Ms depend-
ing on the value of the spin of the substance and the
translational symmetry of the ground state. Necessary
conditions for the occurrence of plateaus have been for-
mulated by Oshikawa et al. [1] employing a generaliza-
tion of the Lieb-Schultz-Mattis theorem: for a spin-S chain
with a magnetic unit cell containing q magnetic moments
this feature can appear at rational values �M� with inte-
ger q�S 2 �M��. The existence of these phenomena in
a variety of models has been established by numerical
and analytical studies of various low-dimensional mag-
netic insulators including spin chains, spin ladders, and
systems with multi spin exchange or exchange anisotropies
[2–13]. Very recently, several experimental observations
of such magnetization plateaus at nonzero �M� have been
reported [14–16].

A common feature in these systems is that the plateaus
in the magnetization curves appear at certain simple frac-
tions of the maximal value Ms as a consequence of their
topological origin. In this Letter we report on a mecha-
nism leading to gaps for magnetic excitations at magne-
tizations which can be controlled by suitable preparation
of the sample, namely, doping. We study this phenome-
non in the framework of a recently introduced class of in-
tegrable models for doped Heisenberg chains which may
be used as a basis for studies of certain features of doped
transition metal oxides [17,18]. Starting from the double-
exchange model [19], a strong ferromagnetic Hund’s rule
coupling between the spins of the itinerant eg electrons and
localized quantum spins �S 2 1�2� arising from the t2g
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electrons allows ones to introduce an effective Hamilto-
nian on a restricted Hilbert space with maximally allowed
spin S0 on a given lattice site [20,21]; i.e., S0 � S if the
electronic state on this site is occupied, or S0 � S 2 1�2
if there is no eg electron (denoted as a hole in the follow-
ing). This derivation of a low-energy Hamiltonian gener-
alizes that of the t-J model from the Hubbard model [22]
which it corresponds to the case of S � 1�2, i.e., no lo-
calized spins. Numerical studies of the S $ 1 variants of
these models have been performed to gain a better under-
standing of experimental findings for the doped Haldane
system Y22xCaxBaNiO5 �S � 1� [20] and manganese ox-
ides such as La12xCaxMnO3 (S � 2) [23].

Below we consider integrable models of this type in one
spatial dimension. Similar to the models obtained from the
general procedure outlined above, their Hamiltonians are
of the form

H �S� �
LX

n�1

�X �S�
n,n11 1 T

�S�
n,n11� . (1)

Here X
�S�
ij and T

�S�
ij describe the (antiferromagnetic) ex-

change and hopping of the holes between sites i and j
of the lattice, respectively. SU�2� invariance of the model
implies that X �S� (T �S�) can be written as polynomials
of degree 2S (2S 2 1) of the operator Si ? Sj (see, e.g.,
[21]). The form of these polynomials is fixed in the inte-
grable models [18]. For example, in the S � 1 case with
possible relevance to the doped nickel oxides, the antiferro-
magnetic exchange terms are given in terms of bilinear and
biquadratic Heisenberg couplings depending on the values
Si,j [ 1�2, 1 of the spins on sites i and j [17]:

X
�1�
ij �

1
2

µ
1

SiSj
Si ? Sj 2 1

1 dSiSj ,1�1 2 �Si ? Sj�2	
∂

.

(Note that the undoped chain, i.e., Si � 1 for all i, is the
integrable spin-1 Takhtajan-Babujian model [24,25] while
the completely doped chain is the spin-1�2 Heisenberg
chain with bilinear exchange.) Similarly, the kinetic term
of the integrable spin-1 model reads

T
�1�

ij � 2�1 2 dSi,Sj �Pij�Si ? Sj� ,
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where Pij is an operator permuting the states on sites i
and j thereby allowing the spin-1�2 “holes” to propagate.
The additional exchange term in this expression leads to
different hopping amplitudes t�Sij� depending on the to-
tal spin Sij on the participating sites, i.e., t�1�2� � 21
and t�3�2� � 11�2 for the possible values Sij � 1�2 and
3�2, respectively. These amplitudes differ from the values
proposed in Ref. [20] for the doped nickel oxide, namely,
t�1�2� � 21�2, t�3�2� � 1. This is one reason for the
absence of a ferromagnetic phase in the integrable model
(1) (see [17] for a discussion of the other differences).

For general S the integrable models are constructed from
solutions of a Yang-Baxter equation and can be solved
by means of the algebraic Bethe ansatz [18]. Their ther-
modynamical properties at finite temperature T can be
obtained from the solution of the thermodynamic Bethe
ansatz (TBA) equations, i.e., the following set of coupled
nonlinear integral equations

en�j� � Ts � ln�1 1 een21�j��T 	 �1 1 een11�j��T 	

2 2pdn,2Ss�j� 2 dn,1Ts � ln�1 1 e2k�j��T 	 ,

2 �2pa2S � s�j� 1 m	 2 Ts � ln�1 1 ee1�j��T 	

� k�j� 1 TR � ln�1 1 e2k�j��T 	 . (2)

Here � f � g� �j� denotes a convolution in the space
of rapidities j, an�j� � �2n�p� �4j2 1 n2�21,
s�j� � �2 coshpj�21, and R � a2 � �1 1 a2�21.
Equations (2) are to be solved subject to the condition
limn°!`�en�n� � H with the external magnetic field H,
and m is the chemical potential for the holes controlling
their concentration. In terms of the functions en�j� and
k�j�, the free energy of this system reads as follows (E

�S�
0

is the ground state energy of the spin-S Takhtajan-Babu-
jian chain for H � 0 [25]):

1
L

F�T , H, m� �
E

�S�
0

L
2 T

Z
dj s�j� ln�1 1 ee2S �j��T 	

2 T
Z

dj�a2S � s� �j� ln�1 1 e2k�j��T 	 .

(3)

The low temperature (H ¿ T ) phase diagram for the
spin-1 system has been obtained in Ref. [17]; qualitatively
the same behavior is found for general S $ 1 [18].

Here we study the properties of these systems in a mag-
netic field at fixed doping. For hole concentrations 0 ,

x , xc�S� (see Fig. 1) the low-energy excitation spectrum
of the system allows one to identify four intermediate field
phases (labeled A, B1, C, and B2 in Fig. 1 of Ref. [17]) for
0 , H , Hs before the system is completely polarized
for H . Hs. Of particular interest in the present context
is the phase C: since the system is not ferromagnetically
polarized one expects nontrivial excitations for both the
charge and magnetic degrees of freedom. In the neigh-
boring phases B1,2 these excitations are massless leading
to an effective description of these phases in terms of a
5580
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FIG. 1. Maximal concentration of holes xc�S� for the existence
of a magnetization plateau vs S21 (the line is a guide to the eye
only).

Tomonaga-Luttinger model. The analysis of the T � 0
limit of the TBA Eqs. (2) shows that in phase C only one
of these modes is gapless [18]. The resulting low-energy
theory is that of a single mode with dispersion,

e2S�j� 1
Z Q

2Q
dj0 K�j 2 j0�e2S�j0� � e

�0�
2S �j� , (4)

where K�j� � 2
P2S21

k�1 a2k�j�, e
�0�
2S �j� � �2S 2

1
2 �H 2

m 2 2p
P2S

k�1 a2k21�j�, and Q is a function of mag-
netic field and chemical potential through the condition
e2S�6Q� � 0. The corresponding hole concentration
x �

RQ
2Q dj s2S�j� is obtained from an equation for

s2S similar to (4) with the driving term replaced by
s

�0�
2S �j� �

P2S
k�1 a2k21�j�. Further analysis of the zero

temperature limit of the TBA Eqs. (2) shows that the
massless mode in this phase carries the charge degrees of
freedon while all magnetic excitations are gapped, i.e.,
k�j� , 0 and enfi2S�j� . 0 for all j. Hence, x and the
magnetization Mp � S 2 3x�2 are constant throughout
this phase for fixed Q, i.e., �2S 2

1
2 �H 2 m � const.

This implies plateaus in the magnetization curve M�H�
below the saturated value Ms � S 2 x�2 (see Fig. 2 for
S � 1). The end points of these plateaus are Hc1 � 22m

and

Hc2 � 2m 1
4
S

1 2
Z Q

2Q
dj a2S21�j�e2S�j� . (5)

As H °! Hc1,2 from inside the plateau region, the spin
gap closes as D ~ jH 2 Hc1,2j.

For finite temperatures the full set of TBA equations
has to be solved to determine the magnetization curves.
In a sufficiently strong magnetic field H ¿ T , however,
the energies en.2S are gapped and can be eliminated from
the TBA Eqs. (2) [17]. For the doped S � 1 chain this
procedure leads to a coupled set of three nonlinear inte-
gral equations which are straightforward to solve by itera-
tion. Choosing the chemical potential such that the hole
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FIG. 2. Zero-temperature magnetization curve of the doped
S � 1 chain for the hole concentrations x � 0.1, 0.2, and 0.3
(top to bottom).

concentration x � 2≠F�≠m is fixed, the magnetization
and magnetic susceptibility can be obtained from the ther-
modynamical potential V�T , H, x� � F�T , H, m� 1 mx.
In Fig. 3 we present the resulting data for various tem-
peratures. They clearly show the formation of plateaus
where the magnetic susceptibility becomes exponentially
small with decreasing temperature as a consequence of
the spin gap. In the same region, the specific heat is
found to be C � pT�3y2S , i.e., linear in T , due to the
presence of the gapless charge mode with Fermi velocity
y2S � e

0
2S�Q��2ps2S�Q�. In the vicinity of the transi-

tions from the spin gap phase into the neighboring phases
with Tomonaga-Luttinger liquid behavior, the singular be-
havior of the magnetization and susceptibility expected
from the analysis of the zero-temperature phase diagram
shows up.

Remarkably, the nature of these singularities on the
two critical end points Hc1,2 of the plateau is quite
different: for the magnetic insulators discussed in the
introduction the singular part of the magnetization near
the plateaus has been predicted to show a square root
behavior [1] due to the similarity of the transition to a
commensurate-incommensurate transition [26]. A reliable
numerical verification of this prediction—even for an
integrable model— is extremely difficult for transitions
other than the one into the ferromagnetically polarized
state [7]. In the model considered here such difficul-
ties arise for H ! Hc1 only: for H & Hc1 the zero
temperature magnetization shows a critical behavior
~ �Hc1 2 Ha� consistent with the square root behavior
a � 1�2 within the numerical accuracy of our data. On
the other hand, near Hc2 the magnetization depends lin-
early on the external field, i.e., M 2 Mp ~ H 2 Hc2 for
H * Hc2. This difference in the critical behavior is also
evident in the temperature dependence of the magnetic
susceptibility near Hc1,2, in particular, x 
 const at the
high-field end of the plateau [see Fig. 3(b)]. Note that a
Hc1 Hc2 Hs
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FIG. 3. Magnetization curve (a) and magnetic susceptibility
(b) of the doped S � 1 chain with hole concentration x � 0.2
at temperatures T � 0.02, 0.05, 0.1, and 0.2 [in units of (1)].

similar T dependence has been observed in experiments
on certain spin-1�2 Heisenberg ladders [27,28].

This different singular behavior is a consequence of the
coupling between the two massless excitations present
in the Tomonaga-Luttinger phases outside the interval
Hc1 , H , Hc2: without the magnetic field breaking the
spin-SU�2� these modes can be assigned usually to spin
and charge excitations separately based on their different
symmetries. In an external field, however, this assignment
leads to a coupling of the two sectors. In certain cases
this interaction can be removed by allowing for mixing of
the corresponding quantum numbers [29]. Analyzing the
Bethe ansatz wave functions we can determine the relation
between the total charges Q1,2 in the two gapless sectors to
the physical quantum numbers, i.e., number of holes and
z component of the total spin. In the phase for H , Hc1
a change in magnetization at fixed doping affects the total
charge in one of the sectors only. Neglecting the coupling
to the other sector, bosonization then gives the familiar
square root singularity of the magnetization at H &

Hc1 [26]. For H . Hc2, however, a change of magneti-
zation requires DQ1 � 2DQ2 for fixed doping x. Conse-
quently, both the magnetic and the charge mode determine
the critical behavior of the system as the critical field Hc2
is approached from above. For H * Hc2 the dispersion
of the “incommensurate” soft mode can be approximated
by the expression e1�k� 
 �y2

Fk2�4D� 2 D, where D !
01 at the transition. From the analysis of the TBA equa-
tions, the field dependence of D is obtained as D ~ �H 2

Hc2�2. This should be contrasted to the usual behavior
D ~ jH 2 Hc2j found in a system of free fermions. The
quadratic field dependence immediately implies the linear
H dependence of the magnetization for H * Hc2.
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In summary, we have studied the properties of doped
Heisenberg chains in a magnetic field in the framework of
a Bethe ansatz solvable model. We find plateaus in the
magnetization curves at certain values Mp of the magneti-
zation. To our knowledge this is a novel feature in an inte-
grable model thereby providing the basis for more detailed
studies aiming at a better understanding of the mechanism
for the occurrence of these plateaus and the critical behav-
ior at their end points. Mp can be continuously tuned by
changing the concentration of carriers. This is fundamen-
tally different from the fixed values of Mp obtained from
topological arguments in the magnetic insulators studied
previously. An extension of these arguments to the case of
doped chains might be possible within a classical treatment
of the localized t2g spins in the double-exchange model
[30]: in this limit the ground state has an incommensurate
magnetic structure with kF periodicity [31]. However, un-
like the models considered here this approach also leads
to gapped charge excitations. An alternative attempt to
describe the plateaus at tunable fractions of the maximal
magnetization within a bosonized model relies just on this
existence of a gapless charge mode [32]. Similarly, the sec-
ond feature where the plateaus discussed here differ from
the ones in quantum spin chains and ladders can be under-
stood only as a consequence of the existence of a second
massless mode: the relation of the physical quantum num-
bers to the conserved charges of the effective low-energy
theory together with the coupling of the gapless channels
conspire to give the linear field dependence of the singular
part of the magnetization observed near the critical point
Hc2. Note that this mechanism does not restrict the critical
exponents to the values 1�2 and 1 discussed in this Letter.

Further studies of the low-energy properties— in
particular, the analysis of the asymptotics of correlation
functions as Hc1,2 are approached— in this solvable mi-
croscopic model will lead to new insights into the critical
behavior at the plateau transitions and possibly the related
ones into Mott insulating phases of interacting particles.
Furthermore, the phenomena reported in this Letter may
be verified in experimental studies of the magnetization
process in the doped, effectively one-dimensional transi-
tion metal oxides mentioned above.
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