5 research outputs found

    In Silico Investigation of the Impact of Reaction Kinetics on the Physico-Mechanical Properties of Coconut-Oil-Based Rigid Polyurethane Foam

    No full text
    Conventionally, designing rigid polyurethane foams (RPUFs) with improved physico-mechanical properties from new, bio-based polyols is performed by modifying foam formulations via experimentation. However, experimental endeavors are very resource-dependent, costly, cumbersome, time-intensive, waste-producing, and present higher health risks. In this study, an RPUF formulation utilizing a coconut-oil (CO)-based polyol with improved physico-mechanical properties was approximated through a computational alternative in the lens of the gel time of the RPUF formation. In the RPUF formation of most bio-based polyols, their very fast gel times negatively impact foam robustness. The computational alternative functioned by finding a CO-based RPUF formulation with a gel time in good agreement with a formulation based on commercial petroleum-derived polyol (control). The CO-based RPUF formulation with the best-fit catalyst loading was approximated by simulating temperature profiles using a range of formulations with modified catalyst loadings iteratively. The computational approach in designing RPUF with improved properties was found to effectively negate foam collapse (with a shrinkage decrease of >60%) and enhance foam strength (with a compressive strength increase of >300%). This study presents an economically and environmentally sustainable approach to designing RPUFs by enabling minimized utilization of material sources for experimentation and analysis and minimized dependence on waste-producing methods

    Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial (vol 321, pg 2292, 2019)

    No full text
    status: publishe

    Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial.

    No full text
    IMPORTANCE An intraoperative higher level of positive end-expiratory positive pressure (PEEP) with alveolar recruitment maneuvers improves respiratory function in obese patients undergoing surgery, but the effect on clinical outcomes is uncertain

    Effect of intraoperative high Positive End-Expiratory Pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients : a randomized clinical trial

    No full text
    IMPORTANCE An intraoperative higher level of positive end-expiratory positive pressure (PEEP) with alveolar recruitment maneuvers improves respiratory function in obese patients undergoing surgery, but the effect on clinical outcomes is uncertain. OBJECTIVE To determine whether a higher level of PEEP with alveolar recruitment maneuvers decreases postoperative pulmonary complications in obese patients undergoing surgery compared with a lower level of PEEP. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial of 2013 adults with body mass indices of 35 or greater and substantial risk for postoperative pulmonary complications who were undergoing noncardiac, nonneurological surgery under general anesthesia. The trial was conducted at 77 sites in 23 countries from July 2014-February 2018; final follow-up: May 2018. INTERVENTIONS Patients were randomized to the high level of PEEP group (n = 989), consisting of a PEEP level of 12 cm H2O with alveolar recruitment maneuvers (a stepwise increase of tidal volume and eventually PEEP) or to the low level of PEEP group (n = 987), consisting of a PEEP level of 4 cm H2O. All patients received volume-controlled ventilation with a tidal volume of 7 mL/kg of predicted body weight. MAIN OUTCOMES AND MEASURES The primary outcomewas a composite of pulmonary complications within the first 5 postoperative days, including respiratory failure, acute respiratory distress syndrome, bronchospasm, new pulmonary infiltrates, pulmonary infection, aspiration pneumonitis, pleural effusion, atelectasis, cardiopulmonary edema, and pneumothorax. Among the 9 prespecified secondary outcomes, 3 were intraoperative complications, including hypoxemia (oxygen desaturation with SpO(2) 1 minute). RESULTS Among 2013 adults who were randomized, 1976 (98.2%) completed the trial (mean age, 48.8 years; 1381 [69.9%] women; 1778 [90.1%] underwent abdominal operations). In the intention-to-treat analysis, the primary outcome occurred in 211 of 989 patients (21.3%) in the high level of PEEP group compared with 233 of 987 patients (23.6%) in the low level of PEEP group (difference, -2.3%[95% CI, -5.9% to 1.4%]; risk ratio, 0.93 [95% CI, 0.83 to 1.04]; P =.23). Among the 9 prespecified secondary outcomes, 6 were not significantly different between the high and low level of PEEP groups, and 3 were significantly different, including fewer patients with hypoxemia (5.0% in the high level of PEEP group vs 13.6% in the low level of PEEP group; difference, -8.6%[95% CI, -11.1% to 6.1%]; P <.001). CONCLUSIONS AND RELEVANCE Among obese patients undergoing surgery under general anesthesia, an intraoperative mechanical ventilation strategy with a higher level of PEEP and alveolar recruitment maneuvers, compared with a strategy with a lower level of PEEP, did not reduce postoperative pulmonary complications
    corecore