190 research outputs found

    Fraglight:shedding light on broken pointcuts in evolving aspect-oriented software

    Get PDF
    Pointcut fragility is a well-documented problem in Aspect-Oriented Programming; changes to the base-code can lead to join points incorrectly falling in or out of the scope of pointcuts. Deciding which pointcuts have broken due to base-code changes is a daunting venture, especially in large and complex systems. We demonstrate an automated tool called FRAGLIGHT that recommends a set of pointcuts that are likely to require modification due to a particular base-code change. The underlying approach is rooted in harnessing unique and arbitrarily deep structural commonality between program elements corresponding to join points selected by a pointcut in a particular software version. Patterns describing such commonality are used to recommend pointcuts that have potentially broken with a degree of confidence as the developer is typing. Our tool is implemented as an extension to the Mylyn Eclipse IDE plug-in, which maintains focused contexts of entities relevant to a task

    High-pressure study of picosecond exciton dynamics in solid C60

    Get PDF
    Journal ArticleWe have studied the singlet exciton decay by picosecond photoinduced absorption in films of Qo, under pressures up to 62 kbar. The picosecond decay of excitons excited in the absorption tail continues to be dominated by broad distributions of lifetimes at high pressure. These results suggest that the distributions of lifetimes do not arise from variations in tunneling or hopping rates between molecules as was originally suggested, but arise from distributions of recombination rates at different sites in the sample

    Agent inferencing meets the semantic web

    Get PDF
    We provide all agent; the capability to infer the relations (assertions) entailed by the rules that, describe the formal semantics of art RDFS knowledge-base. The proposed inferencing process formulates each semantic restriction as a rule implemented within a, SPARQL query statement. The process expands the original RDF graph into a fuller graph that. explicitly captures the rule's described semantics. The approach is currently being explored in order to support descriptions that follow the generic Semantic Web Rule Language. An experiment, using the Fire-Brigade domain, a small-scale knowledge-base, is adopted to illustrate the agent modeling method and the inferencing process

    Comprehension of spacecraft telemetry using hierarchical specifications of behavior ⋆

    Get PDF
    Abstract. A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

    An Efficient Rule-Based Distributed Reasoning Framework for Resource-bounded Systems

    Get PDF
    © 2018, The Author(s). Over the last few years, context-aware computing has received a growing amount of attention among the researchers in the IoT and ubiquitous computing community. In principle, context-aware computing transforms a physical environment into a smart space by sensing the surrounding environment and interpreting the situation of the user. This process involves three major steps: context acquisition, context modelling, and context-aware reasoning. Among other approaches, ontology-based context modelling and rule-based context reasoning are widely used techniques to enable semantic interoperability and interpreting user situations. However, implementing rich context-aware applications that perform reasoning on resource-bounded mobile devices is quite challenging. In this paper, we present a context-aware systems development framework for smart spaces, which includes a lightweight efficient rule engine and a wide range of user preferences to reduce the number of rules while inferring personalized contexts. This shows rules can be reduced in order to optimize the inference engine execution speed, and ultimately to reduce total execution time and execution cost

    Context-Aware Tuples for the Ambient

    Full text link
    In tuple space approaches to context-aware mobile systems, the notion of context is defined by the presence or absence of certain tuples in the tuple space. Existing approaches define such presence either by collocation of devices holding the tuples or by replication of those tuples across all devices. We show that both approaches can lead to an erroneous perception of context. The former ties the perception of context to network connectivity which does not always yield the expected result. The latter causes context to be perceived even if a device has left that context a long time ago. We propose a tuple space approach in which tuples themselves carry a predicate that determines whether they are in the right context or not. We present a practical API for our approach and show its use by means of the implementation of a mobile game
    • …
    corecore