
Semantic Matching-Based Selection and
QoS-Aware Classification of Web Services

Salem Chakhar, Alessio Ishizaka, and Ashraf Labib

Portsmouth Business School, University of Portsmouth, Portsmouth PO1 3DE, UK
{Salem.Chakhar,Alessio.Ishizaka,Ashraf.Labib}@port.ac.uk

Abstract. This paper focuses on Web services matchmaking. It dis-
tinguishes three types of matching: functional attribute-level, functional
service-level, and non-functional. In this paper, a series of parameter-
ized and highly customizable algorithms are advertised for the different
types of matching. A prototype has been developed and used to test the
functional attribute-based conjunctive matching using the SME2 envi-
ronment and the OWLS-TC4 datasets. Results show that the algorithms
behave globally well in comparison to similar existing ones.

Keywords: Web service, Service composition, Matchmaking, Quality
of Service, Similarity Measure.

1 Introduction

An important issue within web service composition is related to the selection
of the most appropriate one among the different candidate web services. In this
paper, we propose a semantic matchmaking framework for web service com-
position. Three types of matching are distinguished in this paper: functional
attribute-level, functional service-level, and non-functional. In [5] we discussed
functional attribute-level and functional service-level matching. This paper en-
hances our proposal in [5] by adding generic functional attribute-level and non-
functional matching. We also briefly describe the developed prototype and com-
pares the attribute-based conjunctive matching to the ones included in the SEM
and SPARQLent frameworks. We used the Semantic Matchmaker Evaluation
Environment (SME2) [13] and the OWLS-TC4 datasets to evaluate the perfor-
mances of the algorithms in respect to several parameters. Results show that
our algorithms behaves globally well in comparison to iSEM and SPARQLent.

The paper is structured as follows. Section 2 sets the background. Sections 3,
4 and 5 present different matching algorithms. Section 6 presents performance
analysis. Section 7 discusses related work. Section 8 concludes the paper.

2 Background

2.1 Basic Definitions

The following are some basic definitions of a service and other service-specific
concepts. Several definitions are due to [7].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29588972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Salem Chakhar, Alessio Ishizaka and Ashraf Labib

Definition 1. A service S is defined as a collection of attributes that describe
the service. Let S.A denotes the set of attributes of service S and S.Ai denotes
each member of this set. Let S.N denotes the cardinality of this set.

Definition 2. The capability of a service S.C is a subset of service attributes
(S.C ⊆ S.A), and includes only functional ones that directly relate to its working.

Definition 3. The quality of a service S.Q, is a subset of service attributes
(S.Q ⊆ S.A), and includes all attributes that relate to its QoS.

Definition 4. The property of a service, S.P , is a subset of service attributes
(S.P ⊆ S.A), and includes all attributes other than those included in service
capability or service quality.

2.2 Service Matching Types and Process

The input for a Web service composition is a set of specifications describing
the capabilities of the desired service. These specifications can be decomposed
into two groups [4][5]: (i) functional requirements that deal with the desired
functionality of the composite service, and (ii) non-functional requirements that
relate to the issues like cost, performance and availability. These specifications
need to be expressed in an appropriate language. In this paper, we adopt an
extended version of Ontology Web Language (OWL) [1] for expressing functional
requirements and the Quality of Service (QoS) for non-functional requirements.

In [5], we distinguished three types of service matching: (i) functional attribute-
level matching that implies capability and property attributes and consider
each matching attribute independently of the others; (ii) functional service-
level matching that considers capability and property attributes but the match-
ing operation implies attributes both independently and jointly; and (iii) non-
functional matching which focuses on the attributes related to the QoS.

The functional matching takes as input all candidate Web services and pro-
duces a set of Web services that meet the user functional matching criteria.
Hence, service types that fail to meet the user functional requirements are auto-
matically eliminated. The non-functional matching takes as input a set of Web
service instances that meet the functional requirements and classify them into
different predefined and ordered quality of service classes.

2.3 Similarity Measure

A semantic match between two entities frequently involves a similarity measure
that quantifies the semantic distance between the two entities participating in
the match. As in [7], a similarity measure is defined as follows.

Definition 5. The similarity measure, µ, of two service attributes is a mapping
that measures the semantic distance between the conceptual annotations associ-
ated with the service attributes. Mathematically,

Semantic Matching-Based Selection and QoS-Aware Classification of WS 3

µ : A×A → {Exact, Plug-in, Subsumption, Container, Part-of, Fail}

where A is the set of all possible attributes.

The mapping between two conceptual annotations is called:

– Exact map: if the two conceptual annotations are syntactically identical,
– Plug-in map: if the first conceptual annotation is specialized by the second,
– Subsumptionmap: if the first conceptual annotation specializes the second,
– Container map: if the first conceptual annotation contains the second,
– Part-of map: if the first conceptual annotation is a part of the second, and
– Fail map: if none of the previous cases applies.

A preferential total order is established on the above mentioned similarity maps.

Definition 6. Preference amongst similarity measures is governed by the fol-
lowing strict total order:

Exact ≻ Plug-in ≻ Subsumption ≻ Container ≻ Part-of ≻ Fail

where a ≻ b means that a is preferred over b.

To compute the similarity degrees, we implemented the idea proposed by [2]
which starts by constructing a bipartite graph where the vertices in the left side
correspond to the concepts associated with advertised services, while those in
the right side correspond to the concepts associated with the requested service.
The edges correspond to the semantic relationships between concepts. Then,
the authors in [2] assign a weight to each edge and then apply the Hungarian
algorithm [16] to identify the complete matching that minimizes the maximum
weight in the graph. The final returned degree is the one corresponding to the
maximum weight in the graph.

3 Functional Attribute-Level Matching

Functional matching is the process of discovering a service advertisement that
sufficiently satisfies a service request [7]. It is based on the concept of sufficiency,
which itself is based on the similarity measure defined in the previous section.

3.1 Conjunctive/Disjunctive Matching

Let SR be the service that is requested, and SA be the service that is advertised.
A first customization of functional matching is to allow the user to specify a
desired similarity measure for each attribute. A sufficient match exists between
SR and SA in respect to a given attribute if there exists an identical attribute
of SA and the values of the attributes satisfy the desired similarity measure.
A second customization of the matching process is to allow the user specifying
which attributes should be utilized during the matching process, and the order
in which the attributes must be considered for comparison. In order to support
both customizations, we use the concept of Criteria Table, introduced by [7],
that serves as a parameter to the matching process.

4 Salem Chakhar, Alessio Ishizaka and Ashraf Labib

Definition 7. A Criteria Table, C, is a relation consisting of two attributes,
C.A and C.M . C.A describes the service attribute to be compared, and C.M
gives the least preferred similarity measure for that attribute. Let C.Ai and C.Mi

denote the service attribute value and the desired measure in the ith tuple of the
relation. C.N denotes the total number of tuples in C.

Example 1. Table 1 shows a Criteria Table example.

Table 1. An example Criteria Table

C.A C.M

input Exact
output Exact

service category Subsumes

A sufficient functional attribute-level conjunctive match between services is
defined as follows.

Definition 8. Let SR be the service that is requested, and SA be the service that
is advertised. Let C be a criteria table. A sufficient conjunctive match exists be-
tween SR and SA if for every attribute in C.A there exists an identical attribute
of SR and SA and the values of the attributes satisfy the desired similarity mea-
sure as specified in C.M . Formally,

∀i∃j,k(C.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj , S
A.Ak) ≽ C.Mi

⇒ SuffFuncConjMatch(SR, SA) 1 ≤ i ≤ C.N.
(1)

The algorithm for functional attribute-level conjunctive matching is provided
in [5]. A less restrictive definition of sufficiency consists in using a disjunctive
rule on the individual matching measures.

Definition 9. Let SR be the service that is requested, and SA be the service
that is advertised. Let C be a criteria table. A sufficient disjunctive match exists
between SR and SA if for at least one attribute in C.A it exists an identical at-
tribute of SR and SA and the values of the attributes satisfy the desired similarity
measure as specified in C.M . Formally,

∃i,j,k(C.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj , S
A.Ak) ≽ C.Mi

⇒ SuffFuncDisjMatch(SR, SA).
(2)

The algorithm for functional attribute-level disjunctive matching is given in [5].

3.2 Generic Matching

In this section we extend the algorithms proposed in [5] to generic binary con-
nectors by allowing the user to specify the conditional relationships between the
capability and property attributes. First, we need to introduce the concept of
sufficient single attribute match.

Semantic Matching-Based Selection and QoS-Aware Classification of WS 5

Definition 10. Let SR be the service that is requested, and SA be the service
that is advertised. Let C be a criteria table. A sufficient match exists between SR

and SA in respect to attribute SR.Ai if there exists an identical attribute of SA

and the values of the attributes satisfy the desired similarity measure as specified
in C.Mi. Formally,

∃j,k(C.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj , S
A.Ak) ≽ C.Mi)

⇒ SuffSingleAttrMatch(SR, SA, Ai).
(3)

The single attribute matching is formalized in Algorithm 1 that follows directly
from Sentence (3).

Algorithm 1: SuffSingleAttrMatching

Input : SR, // Requested service.

SA, // Advertised service.
C, // Criteria Table.
i, // Service attribute index.

Output: Boolean// success/fail.

while
(
j ≤ SR.N

)
do

if
(
SR.Aj = C.Ai

)
then

Append SR.Aj to rAttrSet;

Assign j ←− j + 1; ;

while
(
k ≤ SA.N

)
do

if
(
SA.Ak = C.Ai

)
then

Append SA.Ak to aAttrSet;

Assign k ←− k + 1;

if (µ(rAttrSet[i], aAttrSet[i]) ≽ C.Mi) then
return success;

return fail;

Let now define the sufficient functional generic match.

Definition 11. Let SR be the service that is requested, and SA be the service
that is advertised. Let C be the criteria table. Let T be a complex logical clause
where operands are the attributes related by logical operators (e.g. or, and, not).
A sufficient functional generic match between SR and SA holds if and only the
logical clause T holds. Formally,

Parse(T) ∧ Evaluate(T)
⇒ SuffAttrGenericMatch(SR, SA).

(4)

where Parse and Evaluate are functions devoted respectively to parse and eval-
uate the logical expression T .

The functional generic match is formalized in Algorithm 2, which follows directly
from Sentence (4).

6 Salem Chakhar, Alessio Ishizaka and Ashraf Labib

Example 2. An example of a logical expression is “T = A5 or (A2 and A3)”.
In this example, the matching holds when either (i) the matching in respect
to attribute A5 holds, or (ii) the matching in respect to attribute A2 and the
matching in respect to attribute A3 hold jointly.

Algorithm 2: SuffAttrGenericMatch

Input : SR, // Requested service.

SA, // Advertised service.
C, // Criteria table.
T , // Logical expression.

Output: Boolean// success/fail.
if (NOT(Parse(T))) then

return fail;

T ′ ←− T ;
Z ←− ∅;
for

(
each Al ∈ T ′) do
if (Al /∈ Z) then

t←− false;

t←− SuffSingleAttrMatch(SR, SA, Al);
replace all Al ∈ T by the value of t;
Z ←− Z ∪ {Al};

if (Evaluate(T)) then
return success;

return fail;

3.3 Computational Complexity

Let first focalize on the complexity of Algorithm 1. The complexity of the two
while loops in Algorithm 1 is equal to O(SR.N) +O(SA.N). Since we generally
have SA.N ≫ SR.N , hence the complexity of the two while loops is equal to
O(SA.N). Then, the worst case complexity of Algorithm 1 is O(SA.N)+α where
α is the complexity of computing µ. The value of α depends on the approach
used to infer µ. As underlined in [7], inferring µ by ontological parse of pieces
of information into facts and then utilizing commercial rule-based engines which
use the fast Rete [8] pattern-matching algorithm leads to α = O(|R||F ||P |)
where |R| is the number of rules, |F | is the number of facts, and |P | is the
average number of patterns in each rule. In this case, the worst case complexity
of Algorithm 1 is O(SA.N) + O(|R||F ||P |). Furthermore, we observe, as in [7],
that the process of computing µ is the most “expensive” step of the algorithm.
Hence, the complexity of Algorithm 1 isO(SA.N)+O(|R||F ||P |) ≍ O(|R||F ||P |).

The complexity of Algorithm 2 depends on the complexity of functions Parse
and Evaluate. The complexity of these functions depends on the data structure
used to represent the logical expression T (graph, truth tables, etc.). Clearly
the complexity of Evaluate function is largely greater than the complexity of
Parse function. Hence, the complexity of Algorithm 2 is O(|R||F ||P |) + O(γ)
where O(γ) is the complexity of Evaluate function.

Semantic Matching-Based Selection and QoS-Aware Classification of WS 7

4 Functional Service-Level Matching

The functional service-level matching allows the client to use two types of de-
sired similarity: (i) desired similarity values associated with each attribute in
the criteria table, and (ii) a global desired similarity that applies to the service
as a whole. The service-level similarity measure quantifies the semantic distance
between the requested service and the advertised service entities participating in
the match by taking into account both attribute-level and service-level desired
similarity measures.

Definition 12. Let SR be the service that is requested, and SA be the service
that is advertised. Let C be a criteria table. Let β be the service-level desired
similarity measure. A sufficient service-level match exists between SR and SA if
(i) for every attribute in C.A there exists an identical attribute of SR and SA and
the values of the attributes satisfy the desired similarity measure as specified in
C.M , and (ii) the value of overall similarity measure satisfies the desired overall
similarity measure β. Mathematically,

[∀i (SuffSingleAttrMatch(SR, SA, Ai)) 1 ≤ i ≤ C.N]∧
[∃j1, · · · , ji, · · · , jN (ζ(s1,j1 , · · · , si,ji , · · · , sN,jN) ≽ β)]

⇒ SuffFuncServiceLevelMatch(SR, SA),
(5)

where ζ is an aggregation rule; and for i = 1, · · · , N and ji ∈ {j1, · · · , jN}:

si,ji = µ(SR.Ai, S
A.Aji).

The parameter β may be any of the maps given in Section 2.3. The functional
service-level matching is given in [5]. The aggregation rule ζ used in the definition
above is a tool to combine the similarity measures into a single similarly measure.
In [5], we defined ζ as follows:

ζ : F1 × · · · × FN → {Exact, Plug-in, Subsumption,Container, Part-of, Fail}

where Fj={Exact, Plug-in, Subsumption,Container, Part-of, Fail} (j = 1, · · · , N);
and N is the number of attributes included in the criteria table.

The similarity maps and the corresponding strict total order given in Section
2.3 still apply here. Since the similarity measures are defined on an ordinal
scale, there are only a few possible aggregation rules that can be used to combine
similarity measures [5]: Minimum, Maximum, Median, Floor and Ceil. The Floor
and Ceil rules apply only when there is an even number of similarity measures
(which leads to two median values).

5 QoS-Oriented Classification

The QoS-oriented matching concerns QoS attributes only and applies to service
instances that verify functional requirements. The objective of QoS matching
is to assign to each instance an overall QoS level. Instead of sorting services

8 Salem Chakhar, Alessio Ishizaka and Ashraf Labib

from best to worst, we propose to categorize them into an ordered set of QoS
classes Cl = {Cl1, · · · , Clp}, such that the higher the class, the higher the QoS
level. The computing of overall QoS level for each instance requires the use of
a multicriteria aggregation rule. In this paper, we will use the simple majority
with veto support rule.

5.1 Classification algorithm

Let first introduce some new concepts.

Definition 13. A QoS Attribute Table, Q, is a relation consisting of three at-
tributes, Q.A, Q.T and Q.S. Q.A describes the service attribute to be compared,
Q.T gives the attribute type and Q.S specifies the scale type. Two types of at-
tributes are distinguished: gain and cost. The gain attributes are those to be
maximized while cost attributes are those to be minimized. The scale may be
nominal, ordinal, cardinal or ratio. Let Q.Ai, Q.Ti and Q.Si denote the ser-
vice attribute value, the attribute type and the scale type of the ith tuple of the
relation. Let Q.N be the total number of tuples in Q.

Example 3. Table 2 shows a QoS Attribute Table example. It specifies the pa-
rameters of four QoS attributes: response time (A1), availability (A2), security
(A3) and cost (A4).

Table 2. An example QoS Attribute Table

Q.A Q.T Q.S

A1: Response time cost Cardinal
A2: Availability gain Cardinal
A3: Security gain Ordinal
A4: Cost cost Cardinal

Definition 14. A Boundary Matrix, B, consisting of a pairwise matrix com-
posed of p− 1 columns B1,· · ·,Bp−1 and N rows corresponding to the number of
QoS attributes.

Example 4. An example of Boundary Matrix is given in Table 3. It specifies
three boundaries in respect to the QoS given in Table 2. Table 3 defines four
QoS classes.

The attribute type and scale parameters should be used to control input
data, especially the definition of boundaries.

Definition 15. A Weight Table, W , is a relation consisting of two attributes,
W.A and W.V . W.A describes the service attribute and W.V specifies the weight
of this attribute. Let W.Ai and W.Vi denote the service attribute and the attribute
weight value in the ith tuple of relation W . The weights values must sum to 1.

Semantic Matching-Based Selection and QoS-Aware Classification of WS 9

Table 3. An example Boundary Matrix

Q.Ai B1 B2 B3

Response time 11 9.25 8
Availability 0.2 0.3 0.51
Security 2 3 4
Cost 4 3.5 3

Example 5. An example of Weight Table is given in Table 4.

Table 4. An example Weight Table

W.A W.V

Response time 0.325
Availability 0.325
Security 0.175
Cost 0.175

Definition 16. Let h ∈ {1, · · · , p}. The concordance power for the outranking
of advertised service SA over boundary Bh is computed as follows:

Φ(SA, Bh) =
∑

i∈L1(SA,h)

W.Vi, (6)

where: L1(S
A, Bh) = {i : SA.Ai ≽ Bh.Ai ∧ Q.Ti = ’gain’} ∪ {i : SA.Ai ≼

Bh.Ai ∧Q.Ti = ’cost’} ∪ {i : SA.Ai = Bh.Ai ∧Q.Si = ’nominal’}.

Example 6. Let consider the service instances given in Table 5. Based on the
definition above we obtain L1(s8, B1) = {1, 3, 2, 4}, L1(s8, B2) = {2, 3, 4} and
L1(s8, B3) = {4}. This leads to: Φ(s8, B1) = 1, Φ(s8, B2) = 0.675 and Φ(s8, B3) =
0.175.

Definition 17. Let h ∈ {1, · · · , p}. The discordance power for the outranking of
advertised service SA over boundary Bh is computed as follows:

Ψ(SA, Bh) =
k=N∏
k=1

Zk(S
A.Ak, Bh.Ak), (7)

where:

Zk(S
A.Ak, Bh.Ak) =

{ 1−W.Vk

1−Φ(SA,Bh)
, if W.Ak > Φ(SA, Bh) ∧ k ∈ L2(S

A, Bh)

1, otherwise.
(8)

with L2(S
A, Bh) = {i : SA.Ai ≺ Bh.Ai ∧ Q.Ti = ’gain’} ∪ {i : SA.Ai ≻

Bh.Ai ∧Q.Ti = ’cost’} ∪ {i : SA.Ai ̸= Bh.Ai ∧Q.Si = ’nominal’}.

10 Salem Chakhar, Alessio Ishizaka and Ashraf Labib

Table 5. Web service instances

si A1 A2 A3 A4

si A1 A2 A3 A4

s8 12.82 0.34296 3 2.74
s9 10.92 0.15 1 2.08
s10 9.52 0.51 4 2.5

Example 7. Let consider the service instances given in Table 5. Based on the
definition above we obtain L2(s8, B1) = {1}, L2(s8, B2) = {1} and L2(s8, B3) =
{1, 2}. This leads to: Ψ(s8, B1) = 0.818, Ψ(s8, B2) = 0.818 and Ψ(s2, B3) =
0.670.

Definition 18. Let h ∈ {1, · · · , p}. The credibility index for the outranking of
advertised service SA over boundary Bh is computed as follows:

σ(SA, Bh) = Φ(SA, Bh) · Ψ(SA, Bh). (9)

Example 8. Based on Examples 6 and 7, we obtain σ(s8, B1) = 0.818, σ(s8, B2) =
0.552 and σ(s8, B3) = 0.117.

Definition 19. Let SR be the service that is requested and SA be the service
that is advertised. Let SR.Q be the list of QoS attributes to be utilized for
classification. Service SA is assigned to QoS class Clh if for every QoS at-
tribute of SR there is exists an identical attribute of SA and the value of the
Credibility index is greater or equal to the credibility threshold λ ∈ [0.5, 1] and
σ(SA, Bh) ≥ σ(SA, Bh′) for every h < h′. Formally,

Argmaxh[∃j,k(Q.Ai = SR.Aj = SA.Ak) ∧ σ(SA, Bh) ≥ λ]
⇒ QoSClassification(SR, SA, Clh).

(10)

According to this definition, a service SA is assigned to class Clh if and only
if: (i) there is a “sufficient” majority of attributes in favor of assigning SA to
Clh, and (ii) when the first condition holds, none of the minority of attributes
shows an “important” opposition to the assignment of SA to Clh.

Example 9. Let λ = 0.65. Based on the data and results of the previous example,
we conclude that s8 in Table 5 is assigned to QoS class level 2 since σ(s8, B1) =
0.818 > λ, and σ(s8, B2) = 0.552 < λ and σ(s8, B3) = 0.117 < λ.

The algorithm for QoS Classification is given in Algorithm 3. This algorithm
compares SA to each of the boundaries staring from the highest one and stops
once a sufficient QoS measure holds. The function CredibilityIndex computes
the credibility index as in Equation (9).

A more simple version of the classification algorithm consists in using the sim-
ple majority only. The algorithm based on the simple majority rule is similar to
Algorithm 3. We simply need to replace the test “CredibilityIndex(u, h) ≥ λ”
by “ConcordancePower(u, h) ≥ λ”. The function ConcordancePower computes
the Concordance Power as in Equation (6).

Semantic Matching-Based Selection and QoS-Aware Classification of WS 11

Algorithm 3: QoSClassification

Input : SA, // Advertised service.
λ, // Credibility threshold.
Q, // QoS Table.
B, // Boundary Matrix.
W , // Weight Table.

Output: Cl = {Cl1, · · · , Clp}// Global QoS classes.
p←−number of QoS classes;
Cli ←− ∅, ∀i = 1, · · · , p;
U ←− instances of SA;
for (all u ∈ U) do

h←− p− 1;
assigned←− False;
while (h ≥ 0 ∧ NOT(assigned)) do

if (CredibilityIndex(u, h,W) ≥ λ) then
Clh+1 ←− Clh+1 ∪ {u};
assigned←− true;

h←− h− 1;

Cl←− {Cl1, · · · , Clp};
return Cl;

5.2 Computational Complexity

Algorithm 3 runs in O(2mp × |U |) where U is the set of instances. Note that
function ConcordancePower runs in O(m) and function CredibilityIndex runs
in O(2m). The complexity of the simple version of the classification algorithm
which is based only on the majority rule and which is not given here, is O(mp×
|U |), where m is the number of QoS attributes and p is the number of QoS
classes.

5.3 Illustration

Let us consider the list of potential compositions given in Table 6. We assume
that these compositions have meet the functional requirements of the user. Table
6 shows the evaluation of the compositions in respect to four QoS attributes
(response time (A1), availability (A2), security (A3), and cost (A4) attributes)
given in Table 2. The objective is to classify the compositions into different
ordered categories. For the purpose of this example, we assume that the four
categories defined by Table 3 and the weights given in Table 4 have been used.

The final classifications obtained by the simple majority and simple majority
with veto algorithms where the credibility threshold is λ = 0.65 are given in
Table 6. In this table, we can see that both simple majority and majority with
veto algorithms assign instances s3 and s10 to the best QoS class. We remark
also that both algorithms assign instances s5 and s9 to the worst QoS class.
Which is interesting to see in Table 6 is the role of veto effect in the assignment
of instances s8 and s13. Indeed, the QoS of both instances have been decreased
(from 3 to 2 for instance s8 and from 2 to 1 for instance s13) by the majority
with veto algorithm. This happens because the weights of attributes which are
against the assignment—of instance s8 to QoS class 3 and instance s13 to QoS
class 2—have been taken into account.

12 Salem Chakhar, Alessio Ishizaka and Ashraf Labib

Table 6. Potential compositions and final classification for λ=0.65

Simple Majority
si A1(si) A2(si) A3(si) A4(si) Majority +Veto

s1 9.2 0.45946 1 2.48 3 3
s2 8.12 0.41817 1 2.68 3 3
s3 8 0.53 4 2.78 4 4
s4 8.19 0.46967 2 3.24 3 3
s5 11.15 0.19 1 2.74 1 1
s6 7.42 0.40317 2 3.38 3 3
s7 7.72 0.36676 2 3.18 3 3
s8 12.82 0.34296 3 2.74 3 2
s9 10.92 0.15 1 2.08 1 1
s10 9.52 0.51 4 2.5 4 4
s11 10.12 0.53294 3 2.68 3 3
s12 10.42 0.48356 1 2.32 2 2
s13 12.52 0.2 1 3.14 2 1
s14 8.42 0.48 1 2.82 3 3
s15 10.32 0.48 4 2.16 3 3

6 Implementation and performance analysis

A prototype called PMCF (Parameterized Matching-Classification Framework)
has been implemented. Figure 1 provides the architecture of PMCF. The inputs
are the Criteria Table, the published Web services repository, the user request
and its corresponding Ontologies. The inputs are parsed by the Semantic Match-
making Module which filters service offers that match with the Criteria Table.
The result should then be passed to the Classification Module which assigns the
matching services into different QoS classes. We note that Classification Module
is not implemented in the current version of PMCF. We used OWLS API to parse
the published Web services list and the user request. The similarity between the
concepts inferred using Jena API (see http://jena.sourceforge.net). Finally,
we note that in the current version, PMCF supports only Input and Output at-
tributes and only the functional attribute-based conjunctive matching.

We used SME2 [13] to evaluate the performance of PMCF. SME2 is an open
source tool for testing different semantic matchmakers in a consistent way. SME2
uses OWLS-TC collection to provide the matchmakers with services descriptions,
and to compare their answers to the relevance sets of the various queries. Dif-
ferent experimentations was conducted on a dell Inspiron 15 3735 Laptop with
an Intel Core I5 processor (1.6 GHz) and 2 GB of memory. The test collection
used is OWLS-TC4, which consists of 1083 service offers described in OWL-S
1.1 and 42 queries. The implemented Plugin for the experiment required a pre-
cise interface, we could not take the Criteria Table as an input, so we assigned
to it a default value (Input: Fail, Output:Fail). SME2 gives several metrics to
evaluate the performance and effectiveness of a service matchmaker. The metrics
that have been considered in this paper are: precision and recall, query response

Semantic Matching-Based Selection and QoS-Aware Classification of WS 13

time and memory time. The definition of these metrics are given in [13][17]. We
compared the results of our PMCF matchmaker with SPARQLent approach [24]
and and iSEM approach [14]. SPARQLent is a logic-based matchmaker based on
the OWL-DL reasoner Pellet to provide exact and relaxed service matchmaking.
iSEM is an hybrid matchmaker offering different filter matchings: logic-based,
approximate reasoning based on logical concept abduction for matching Inputs
and Outputs. We consider only the I-O logic-based matching for the comparison
issue. We note that SPARQLent and iSEM consider preconditions and effects of
Web services, which is out of the scope of our approach.

Fig. 1. Architecture of the prototype PMCF

Figure 2.a presents the recall precision of PMCF, iSEM logic-based and
SPARQLent. This figure shows that PMCF recall is significantly better than
both iSEM logic-based and SPARQLent. This means that our approach is able
to reduce the amount of false positives.

Figure 2.b compares the Query Response Time of PMCF, logic-based iSEM
and SPARLent when answering the 42 queries of OWLS-TC; the first column
(Avg) gives the average response time for the three matchmakers. The exper-
imental results show that PMCF is more faster than SPARQLent and slightly
less faster than logic-based iSEM. We note that SPARQLent has especially high
query response time if the query include preconditions/effects. Moreover, SPAR-
QLent is based on an OWL DL reasoner which is an expensive processing. PMCF
and iSEM have close query response time because both consider direct par-
ent/child relations in a subsumption graph which reduce significantly the query
processing. The PMCF highest query response time limit is 248ms.

Finally, Figure 2.c shows the Memory Usage for PMCF, iSEM logic-based
and SPARQLent. It is easy to see that PMCF consumes less memory than iSEM
logic-based and SPARQLent. This can be explained by the fact that PMCF does

14 Salem Chakhar, Alessio Ishizaka and Ashraf Labib

not require a reasoner neither a SPARL queries in order to compute similarities
between concepts.

(a) (b)

(c)

Fig. 2. Results of performance analysis

7 Related Work

In this section we discuss some matchmaking frameworks in respect to several
characteristics. The first characteristic is related to the support of customization
which is an important issue in practice, as recognized by [7]. Most of proposed
matching systems ignore this point and only a few ones take into account this
aspect. In [7], for instance, the authors present a parameterized semantic match-
making framework that enables the user to specify the matched attributes and
the order in which attributes are compared. In [7], the sufficiency condition de-
fined by the authors is very strict. This problem has been addressed in [5] and
in this paper by relaxing matchmaking conditions and supporting three types of
matching.

Semantic Matching-Based Selection and QoS-Aware Classification of WS 15

The second characteristic concerns the type of attributes used in the matching
operation. Most of existing matchmaking frameworks [3][11][18] use only service
capability as the criteria for the match. The authors in [7] distinguish two types
of matching attributes: capability and property. In [19], the author proposes
two approaches to service selection based on QoS attributes. The authors in [23]
discuss various techniques of QoS based service selection. The author in [15] pro-
poses a QoS-based web service selection based on a stochastic optimization. In
[25], the authors propose a QoS-aware web service selection algorithm based on
clustering. The framework presented in this paper identify three types of match-
ing attributes by subdividing property attributes set into two sets of attributes:
those directly related to the QoS and those which are not. We think that the
proposed framework enhances the above cited proposals, especially the work of
[7].

The third characteristic is related to the method used to compare the re-
quested and advertised services. Most of existing proposals use simple syntactic
and strict capability-based search. In paper [7], the authors present a semantic
matchmaking framework that avoids the limitations of strict capability-based
matchmaking and in [9] the authors transform the problem of matching web
services to the computation of semantic similarity between concepts in domain
ontology using a semantic distance measure. The proposal of [2] improve [22]’s
matchmaking algorithm and propose a greedy-based algorithm that relies on the
concept of matching bipartite graphs. In this paper, we adopted and extended
the semantic matchmaking framework proposed by [7].

The fourth characteristic concerns the support of the multicriteria evaluation.
There are a few proposals that explicitly support multicriteria evaluation, e.g.
[6][12][20][21][26]. Most of them use weighted-sum like aggregation techniques.
The authors in [26] use linear programming techniques to compute the optimal
execution plans for web service. The author in [20] considers two evaluation
criteria (time and cost) and assigns to each one a weigh. The best composition
of Web services is then decided on the basis of the optimum combined score and a
service selection QoS broker by maximizing a utility function is provided by [21].
We note, however, that this type of methods have two main shortcomings: (i)
they accept only numerical data and (ii) may lead to the compensation problem
since low values may be counterbalanced by high values. The approach used in
this paper accepts any type of data and resolves the compensation problem.

8 Conclusion

We presented a QoS-aware semantic matching framework. The framework sup-
ports three types of matching: functional attribute-level matching, functional
service-level matching, and QoS-based matching. A series of highly customiz-
able algorithms are advertised for each type of matching.

Several issues need to be further investigated. First, the reduction of the
number of parameters required from the user by automatically generating the
boundaries of QoS classes. Second, the use of the rough sets theory-based classi-

16 Salem Chakhar, Alessio Ishizaka and Ashraf Labib

fication [10] for assigning instances to QoS classes. Third, the use of multicriteria
ranking methods instead of the classification approach used in this paper.

Acknowledgments. The authors would like to thank Fatma Ezzahra Gmati
(National School of Computer Sciences, University of Manouba, Tunis, Tunisia)
for developing the prototype and for conducing the performance analysis. The
authors would also like to thank Dr. Nadia Yacoubi-Ayad (National School of
Computer Sciences, University of Manouba, Tunis, Tunisia) who co-supervised
the developing of the prototype and the performance analysis.

References

1. V. Agarwal, G. Chafle, K. Dasgupta, N. Karnik, A. Kumar, S. Mittal, and B. Sri-
vastava. Synthy: A system for end to end composition of web services. Journal of
Web Semantics, 3:311–339, 2005.

2. U. Bellur and R. Kulkarni. Improved matchmaking algorithm for semantic web
services based on bipartite graph matching. In IEEE International Conference on
Web Services, pages 86–93, Salt Lake City, Utah, USA, 9-13 July 2007.

3. S. Ben Mokhtar, A. Kaul, N. Georgantas, and V. Issarny. Efficient semantic service
discovery in pervasive computing environments. In ACM/IFIP/USENIX 2006
International Conference on Middleware, pages 240–259, Melbourne, Australia, 27
November - 1 December 2006.

4. S. Chakhar. QoS-enhanced broker for composite web service selection. In Eighth
International Conference on Signal Image Technology and Internet Based Systems
(SITIS 2012), pages 533–540, Sorrento-Naples, Italy, 25-29 November 2012.

5. S. Chakhar. Parameterized attribute and service levels semantic matchmaking
framework for service composition. In Fifth International Conference on Advances
in Databases, Knowledge, and Data Applications (DBKDA 2013), pages 159–165,
Seville, Spain, 27 January - 1 February 2013.

6. L. Cui, S. Kumara, and D. Lee. Scenario analysis of web service composition based
on multi-criteria mathematical goal programming. Service Science, 3(4):280–303,
2011.

7. P. Doshi, R. Goodwin, R. Akkiraju, and S. Roeder. Parameterized semantic match-
making for workflow composition. IBM Research Report RC23133, IBM Research
Division, 2004.

8. C. Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artificial Intelligence, 19(1):17–37, 1982.

9. P. Fu, S. Liu, H. Yang, and L. Gu. Matching algorithm of web services based
on semantic distance. In International Workshop on Information Security and
Application (IWISA 2009), pages 465–468, Qingdao, China, 21-22 November 2009.

10. S. Greco, B. Matarazzo, and R. Slowiński. Rough sets theory for multicriteria
decision analysis. European Journal of Operational Research, 129(1):1–47, 2001.

11. R. Guo, J. Le, and X.L. Xiao. Capability matching of web services based on
OWL-S. In Sixteenth International Workshop on Database and Expert Systems
Applications, pages 653–657, 22-26 August 2005.

12. B. Jeong, H. Cho, B. Kulvatunyou, and A. Jones. A multi-criteria web services
composition problem. In IEEE International Conference on Information Reuse
and Integration(IRI 2007), pages 379–384, 2007.

Semantic Matching-Based Selection and QoS-Aware Classification of WS 17

13. M. Klusch, M. Dudev, J. Misutka, P. Kapahnke, and M. Vasileski. SME2 Version
2.2. User Manual. The German Research Center for Artificial Intelligence (DFKI),
Germany, 2010.

14. M. Klusch and P. Kapahnke. The iSEM matchmaker: A flexible approach for
adaptive hybrid semantic service selection. Web Semantics: Science, Services and
Agents on the World Wide Web, 15(0):1–14, 2012.

15. R. Krithiga. QoS-aware web service selection using SOMA. Global Journal of
Computer Science and Technology, 12(10):46–51, 2012.

16. H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

17. U. Küster and B. König-Ries. Measures for benchmarking semantic Web service
matchmaking correctness. In Proceedings of the 7th International Conference on
The Semantic Web: Research and Applications - Volume Part II, ESWC’10, pages
45–59, Berlin, Heidelberg, 2010. Springer-Verlag.

18. L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In 12th International World Wide Web Conference, pages 331–
339, Budapest, Hungary, 20-24 May 2003.

19. A.S. Ludwig. Memetic algorithm for web service selection. In Third Workshop
on Biologically Inspired Algorithms for Distributed Systems, BADS ’11, pages 1–8,
New York, NY, USA, 2011. ACM.

20. D.A. Menascé. Composing web services: A QoS view. IEEE Internet Computing,
8(6):88–90, 2004.

21. D.A. Menascé and V. Dubey. Utility-based QoS brokering in service oriented
architectures. In IEEE International Conference on Web Services (ICWS 2007),
pages 422–430, 2007.

22. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In First International Semantic Web Conference on The
Semantic Web, pages 333–347, Sardinia, Italy, 09-12 June 2002.

23. M. Sathya, M. Swarnamugi, P. Dhavachelvan, and G. Sureshkumar. Evaluation of
QoS based web-service selection techniques for service composition. International
Journal of Software Engineering, 1(5):73–90, 2011.

24. M.L. Sbodio, D. Martin, and C. Moulin. Discovering semantic Web services using
SPARQL and intelligent agents. Web Semantics: Science, Services and Agents on
the World Wide Web, 8(4):310–328, 2010.

25. Y. Xia, P. Chen, L. Bao, M. Wang, and J. Yang. A QoS-aware web service selection
algorithm based on clustering. In IEEE International Conference on Web Services
(ICWS), pages 428–435, 2011.

26. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng. Quality driven
web services composition. In 12th International Conference on World Wide Web,
pages 411–421, New York, NY, USA, 2003. ACM.

