474 research outputs found

    Investigating the impact of the molecular charge-exchange rate on detached SOLPS-ITER simulations

    Full text link
    Plasma-molecular interactions generate molecular ions which react with the plasma and contribute to detachment through molecular activated recombination (MAR), reducing the ion target flux, and molecular activated dissociation (MAD), both of which create excited atoms. Hydrogenic emission from these atoms have been detected experimentally in detached TCV, JET and MAST-U deuterium plasmas. The TCV findings, however, were in disagreement with SOLPS-ITER simulations for deuterium indicating a molecular ion density (D2+D_2^+) that was insufficient to lead to significant hydrogenic emission, which was attributed to underestimates of the molecular charge exchange rate (D2+D+D2++DD_2 + D^+ \rightarrow D_2^+ + D) for deuterium (obtained by rescaling the hydrogen rates by their isotope mass). In this work, we have performed new SOLPS-ITER simulations with the default rate setup and a modified rate setup where ion isotope mass rescaling was disabled. This increased the D2+D_2^+ content by >×100> \times 100. By disabling ion isotope mass rescaling: 1) the total ion sinks are more than doubled due to the inclusion of MAR; 2) the additional MAR causes the ion target flux to roll-over during detachment; 3) the total DαD\alpha emission in the divertor increases during deep detachment by roughly a factor four; 4) the neutral atom density in the divertor is doubled due to MAD, leading to a 50\% increase in neutral pressure; 5) total hydrogenic power loss is increased by up to 60\% due to MAD. These differences result in an improved agreement between the experiment and the simulations in terms of spectroscopic measurements, ion source/sink inferences and the occurrence of an ion target flux roll-over

    SOLPS-ITER validation with TCV L-mode discharges editors-pick

    Get PDF
    This work presents a quantitative test of SOLPS-ITER simulations against tokamak a configuration variable (TCV) L-mode experiments. These simulations account for drifts, currents, kinetic neutrals, and carbon impurities providing the most complete edge transport simulations for TCV to date. The comparison is performed on nominally identical discharges carried out to assess the effectiveness of TCV's divertor baffles in the framework of the European Plasma Exhaust program and employs numerous edge diagnostics providing a detailed code-experiment benchmark for TCV. The simulations show a qualitative consistency, but the quantitative differences remain, which are assessed herein. It is found that, for a given separatrix density, the simulations most notably yield a colder, and denser, divertor state with a higher divertor neutral pressure than measured

    Communications Biophysics

    Get PDF
    Contains reports on five research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-02

    Rab27a and Rab27b control different steps of the exosome secretion pathway

    Get PDF
    Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo

    Scrape Off Layer (SOL) transport and filamentary characteristics in high density tokamak regimes

    Get PDF
    A detailed cross-device investigation on the role of filamentary dynamics in high density regimes has been performed within the EUROfusion framework comparing ASDEX Upgrade (AUG) and TCV tokamaks. Both devices have run density ramp experiments at different levels of plasma current, keeping toroidal field or q95 constant in order to disentangle the role of parallel connection length and the current. During the scan at constant toroidal field, in both devices SOL profiles tend to develop a clear Scrape Off Layer (SOL) density shoulder at lower edge density whenever current is reduced. The different current behavior is substantially reconciled in terms of edge density normalized to Greenwald fraction. During the scan at constant q95 AUG exhibits a similar behaviour whereas in TCV no signature of upstream profile modification has been observed at lower level of currents. The latter behaviour has been ascribed to the lack of target density roll-over. The relation between upstream density profile modification and detachment condition has been investigated. For both devices the relation between blob-size and SOL density e-folding length is found independent of the plasma current, with a clear increase of blob-size with edge density normalized to Greenwald fraction observed. ASDEX Upgrade has also explored the filamentary behaviour in H-Mode. The experiments on AUG focused on the role of neutrals, performing discharges with and without the cryogenic pumps, highlighting how large neutral pressure not only in the divertor but at the midplane is needed in order to develop a H-Mode SOL profile shoulder in AUG

    Effective Gene Therapy in a Mouse Model of Prion Diseases

    Get PDF
    Classical drug therapies against prion diseases have encountered serious difficulties. It has become urgent to develop radically different therapeutic strategies. Previously, we showed that VSV-G pseudotyped FIV derived vectors carrying dominant negative mutants of the PrP gene are efficient to inhibit prion replication in chronically prion-infected cells. Besides, they can transduce neurons and cells of the lymphoreticular system, highlighting their potential use in gene therapy approaches. Here, we used lentiviral gene transfer to deliver PrPQ167R virions possessing anti-prion properties to analyse their efficiency in vivo. Since treatment for prion diseases is initiated belatedly in human patients, we focused on the development of a curative therapeutic protocol targeting the late stage of the disease, either at 35 or 105 days post-infection (d.p.i.) with prions. We observed a prolongation in the lifespan of the treated mice that prompted us to develop a system of cannula implantation into the brain of prion-infected mice. Chronic injections of PrPQ167R virions were done at 80 and 95 d.p.i. After only two injections, survival of the treated mice was extended by 30 days (20%), accompanied by substantial improvement in behaviour. This delay was correlated with: (i) a strong reduction of spongiosis in the ipsilateral side of the brain by comparison with the contralateral side; and (ii) a remarkable decrease in astrocytic gliosis in the whole brain. These results suggest that chronic injections of dominant negative lentiviral vectors into the brain, may be a promising approach for a curative treatment of prion diseases

    Nanostructural and Transcriptomic Analyses of Human Saliva Derived Exosomes

    Get PDF
    Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites, amniotic, bronchoalveolar lavage, and synovial fluids). In particular, exosomes secreted in human saliva contain proteins and nucleic acids that could be exploited for diagnostic purposes. To investigate this potential use, we isolated exosomes from human saliva and characterized their structural and transcriptome contents.Exosomes were purified by differential ultracentrifugation and identified by immunoelectron microscopy (EM), flow cytometry, and Western blot with CD63 and Alix antibodies. We then described the morphology, shape, size distribution, and density using atomic force microscopy (AFM). Microarray analysis revealed that 509 mRNA core transcripts are relatively stable and present in the exosomes. Exosomal mRNA stability was determined by detergent lysis with RNase A treatment. In vitro, fluorescently labeled saliva exosomes could communicate with human keratinocytes, transferring their genetic information to human oral keratinocytes to alter gene expression at a new location.Our findings are consistent with the hypothesis that exosomes shuttle RNA between cells and that the RNAs present in the exosomes may be a possible resource for disease diagnostics

    Docosahexaenoic and eicosapentaenoic acids increase prion formation in neuronal cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transmissible spongiform encephalopathies, otherwise known as prion diseases, occur following the conversion of the cellular prion protein (PrP<sup>C</sup>) to an alternatively folded, disease-associated isoform (PrP<sup>Sc</sup>). Recent studies suggest that this conversion occurs via a cholesterol-sensitive process, as cholesterol synthesis inhibitors reduced the formation of PrP<sup>Sc </sup>and delayed the clinical phase of scrapie infection. Since polyunsaturated fatty acids also reduced cellular cholesterol levels we tested their effects on PrP<sup>Sc </sup>formation in three prion-infected neuronal cell lines (ScGT1, ScN2a and SMB cells).</p> <p>Results</p> <p>We report that treatment with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) or the cholesterol synthesis inhibitor simvastatin reduced the amounts of free cholesterol in membrane extracts from prion-infected neuronal cells. Simvastatin reduced cholesterol production while DHA and EPA promoted the conversion of free cholesterol to cholesterol esters. Crucially, while simvastatin reduced PrP<sup>Sc </sup>formation, both DHA and EPA significantly increased the amounts of PrP<sup>Sc </sup>in these cells. Unlike simvastatin, the effects of DHA and EPA on PrP<sup>Sc </sup>content were not reversed by stimulation of cholesterol synthesis with mevalonate. Treatment of ScGT1 cells with DHA and EPA also increased activation of cytoplasmic phospholipase A<sub>2 </sub>and prostaglandin E<sub>2 </sub>production. Finally, treatment of neuronal cells with DHA and EPA increased the amounts of PrP<sup>C </sup>expressed at the cell surface and significantly increased the half-life of biotinylated PrP<sup>C</sup>.</p> <p>Conclusion</p> <p>We report that although treatment with DHA or EPA significantly reduced the free cholesterol content of prion-infected cells they significantly increased PrP<sup>Sc </sup>formation in three neuronal cell lines. DHA or EPA treatment of infected cells increased activation of phospholipase A<sub>2</sub>, a key enzyme in PrP<sup>Sc </sup>formation, and altered the trafficking of PrP<sup>C</sup>. PrP<sup>C </sup>expression at the cell surface, a putative site for the PrP<sup>Sc </sup>formation, was significantly increased, and the rate at which PrP<sup>C </sup>was degraded was reduced. Cholesterol depletion is seen as a potential therapeutic strategy for prion diseases. However, these results indicate that a greater understanding of the precise relationship between membrane cholesterol distribution, PrP<sup>C </sup>trafficking, cell activation and PrP<sup>Sc </sup>formation is required before cholesterol manipulation can be considered as a prion therapeutic.</p

    PrP Expression, PrPSc Accumulation and Innervation of Splenic Compartments in Sheep Experimentally Infected with Scrapie

    Get PDF
    BACKGROUND: In prion disease, the peripheral expression of PrP(C) is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrP(Sc) accumulation, localisation of nerve fibres and PrP(C) expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep. METHODOLOGY/PRINCIPAL FINDINGS: Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrP(C) and PrP(Sc) in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrP(Sc) in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrP(Sc) and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrP(Sc) and nerves. Some nerve fibres were observed to accompany blood vessels into the PrP(Sc)-laden germinal centres. However, the close association between nerves and PrP(Sc) was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres. CONCLUSIONS/SIGNIFICANCE: The findings suggest that the degree of PrP(Sc) accumulation does not depend on the expression level of PrP(C). Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrP(Sc)
    corecore