194 research outputs found

    Spatiotemporal role of muscarinic signaling in early chick development: exposure to cholinomimetic agents by a mathematical model

    Get PDF
    Awareness is growing that, besides several neurotoxic effects, cholinomimetic drugs able to interfere the cholinergic neurotransmitter system may exert a teratogen effect in developing embryos of vertebrate and invertebrate organisms. Cholinomimetic substances exert their toxic activity on organisms as they inhibit the functionality of the cholinergic system by completely or partially replacing the ACh molecule both at the level of the AChE active site and at the level of acetylcholine receptors. In this work, we focused the attention on the effects of muscarinic antagonist (atropine) and agonist (carbachol) drugs during the early development and ontogenesis of chick embryos. An unsteady-state mathematical model of the drug release and fate was developed, to synchronize exposure to a gradient of drug concentrations with the different developmental events. Since concentration measures in time and space cannot be taken without damaging the embryo itself, the diffusion model was the only way to establish at each time-step the exact concentration of drug at the different points of the embryo body (considered two-dimensional up to the 50 h stage). This concentration depends on the distance and position of the embryo with respect to the releasing source. The exposure to carbachol generally enhanced dimensions and stages of the embryos, while atropine mainly caused delay in development and small size of the embryos. Both the drugs were able to cause developmental anomalies, depending on the moment of development, in a time- and dose-dependent way, regardless the expression of genes driving each event

    Automatic scenario generation for efficient solution of robust optimal control problems

    Get PDF
    Existing methods for nonlinear robust control often use scenario-based approaches to formulate the control problem as large nonlinear optimization problems. The optimization problems are challenging to solve due to their size, especially if the control problems include time-varying uncertainty. This paper draws from local reduction methods used in semi-infinite optimization to solve robust optimal control problems with parametric and time-varying uncertainty. By iteratively adding interim worst-case scenarios to the problem, methods based on local reduction provide a way to manage the total number of scenarios. We show that the local reduction method for optimal control problems consists of solving a series of simplified optimal control problems to find worst-case constraint violations. In particular, we present examples where local reduction methods find worst-case scenarios that are not on the boundary of the uncertainty set. We also provide bounds on the error if local solvers are used. The proposed approach is illustrated with two case studies with parametric and additive time-varying uncertainty. In the first case study, the number of scenarios obtained from local reduction is 101, smaller than in the case when all 2¹⁴⁺³×¹⁹² extreme scenarios are considered. In the second case study, the number of scenarios obtained from the local reduction is two compared to 512 extreme scenarios. Our approach was able to satisfy the constraints both for parametric uncertainty and time-varying disturbances, whereas approaches from literature either violated the constraints or became computationally expensive

    Automatic Scenario Generation for Robust Optimal Control Problems

    Get PDF
    Existing methods for nonlinear robust control often use scenario-based approaches to formulate the control problem as nonlinear optimization problems. Increasing the number of scenarios improves robustness while increasing the size of the optimization problems. Mitigating the size of the problem by reducing the number of scenarios requires knowledge about how the uncertainty affects the system. This paper draws from local reduction methods used in semi-infinite optimization to solve robust optimal control problems with parametric uncertainty. We show that nonlinear robust optimal control problems are equivalent to semi-infinite optimization problems and can be solved by local reduction. By iteratively adding interim globally worst-case scenarios to the problem, methods based on local reduction provide a way to manage the total number of scenarios. In particular, we show that local reduction methods find worst-case scenarios that are not on the boundary of the uncertainty set. The proposed approach is illustrated with a case study with both parametric and additive time-varying uncertainty. The number of scenarios obtained from local reduction is 101, smaller than in the case when all 2 14+3×192 boundary scenarios are considered. A validation with randomly-drawn scenarios shows that our proposed approach reduces the number of scenarios and ensures robustness even if local solvers are used

    Data-Driven Predictive Control With Improved Performance Using Segmented Trajectories

    Get PDF
    A class of data-driven control methods has recently emerged based on Willems’ fundamental lemma. Such methods can ease the modeling burden in control design but can be sensitive to disturbances acting on the system under control. In this article, we propose a restructuring of the problem to incorporate segmented prediction trajectories. The proposed segmentation leads to reduced tracking error for longer prediction horizons in the presence of unmeasured disturbance and noise when compared with an unsegmented formulation. The performance characteristics are illustrated in a set-point tracking case study in which the segmented formulation enables more consistent performance over a wide range of prediction horizons. The method is then applied to a building energy management problem using a detailed simulation environment. The case studies show that good tracking performance is achieved for a range of horizon choices, whereas performance degrades with longer horizons without segmentation

    Automatic scenario generation for efficient solution of robust optimal control problems

    Get PDF
    Existing methods for nonlinear robust control often use scenario-based approaches to formulate the control problem as large nonlinear optimization problems. The optimization problems are challenging to solve due to their size, especially if the control problems include time-varying uncertainty. This paper draws from local reduction methods used in semi-infinite optimization to solve robust optimal control problems with parametric and time-varying uncertainty. By iteratively adding interim worst-case scenarios to the problem, methods based on local reduction provide a way to manage the total number of scenarios. We show that the local reduction method for optimal control problems consists of solving a series of simplified optimal control problems to find worst-case constraint violations. In particular, we present examples where local reduction methods find worst-case scenarios that are not on the boundary of the uncertainty set. We also provide bounds on the error if local solvers are used. The proposed approach is illustrated with two case studies with parametric and additive time-varying uncertainty. In the first case study, the number of scenarios obtained from local reduction is 101, smaller than in the case when all 214+3×1922^{14+3\times192} extreme scenarios are considered. In the second case study, the number of scenarios obtained from the local reduction is two compared to 512 extreme scenarios. Our approach was able to satisfy the constraints both for parametric uncertainty and time-varying disturbances, whereas approaches from literature either violated the constraints or became computationally expensive.Comment: arXiv admin note: substantial text overlap with arXiv:2204.14145 (IFAC conference submission

    Predictive control co-design for enhancing flexibility in residential housing with battery degradation

    Get PDF
    Buildings are responsible for about a quarter of global energy-related CO2 emissions. Consequently, the decarbonisation of the housing stock is essential in achieving net-zero carbon emissions. Global decarbonisation targets can be achieved through increased efficiency in using energy generated by intermittent resources. The paper presents a co-design framework for simultaneous optimal design and operation of residential buildings using Model Predictive Control (MPC). The framework is capable of explicitly taking into account operational constraints and pushing the system to its efficiency and performance limits in an integrated fashion. The optimality criterion minimises system cost considering time-varying electricity prices and battery degradation. A case study illustrates the potential of co-design in enhancing flexibility and self-sufficiency of a system operating under different conditions. Specifically, numerical results from a low-fidelity model show substantial carbon emission reduction and bill savings compared to an a-priori sizing approach

    IMPACT OF ENGINEERED NANOPARTICLES ON VIRULENCE OF XANTHOMONAS ORYZAE PV ORYZAE AND ON RICE SENSITIVITY AT ITS INFECTION

    Get PDF
    The present work of nanotoxicity wants to propose a new plant model starting from the rice plant. The model takes into consideration the impact of engineered nanoparticles (Ag, Co, Ni, CeO2, Fe3O4, TiO2) on rice plants that were weakened by infections of Xanthomonas oryzae pv oryzae bacteria. The results indicate that some NPs increase the rice sensitivity to the pathogen while others decrease the virulence of the pathogen towards rice. No-enrichment in component metal concentration is detected in above organs of rice, with exception of Ni-NPs treatment. An imbalance of major elements in infected rice crops treated with NPs was investigated

    Fast and accurate method for computing non-smooth solutions to constrained control problems

    Get PDF
    Introducing flexibility in the time-discretisation mesh can improve convergence and computational time when solving differential equations numerically, particularly when the solutions are discontinuous, as commonly found in control problems with constraints. State-of-the-art methods use fixed mesh schemes, which cannot achieve superlinear convergence in the presence of non-smooth solutions. In this paper, we propose using a flexible mesh in an integrated residual method. The locations of the mesh nodes are introduced as decision variables, and constraints are added to set upper and lower bounds on the size of the mesh intervals. We compare our approach to a uniform fixed mesh on a real-world satellite reorientation example. This example demonstrates that the flexible mesh enables the solver to automatically locate the discontinuities in the solution, has superlinear convergence and faster solve time

    Vaccinomics and Personalized Vaccinology: Is Science Leading Us Toward a New Path of Directed Vaccine Development and Discovery?

    Get PDF
    As is apparent in many fields of science and medicine, the new biology, and particularly new high-throughput genetic sequencing and transcriptomic and epigenetic technologies, are radically altering our understanding and views of science. In this article, we make the case that while mostly ignored thus far in the vaccine field, these changes will revolutionize vaccinology from development to manufacture to administration. Such advances will address a current major barrier in vaccinology—that of empiric vaccine discovery and development, and the subsequent low yield of viable vaccine candidates, particularly for hyper-variable viruses. While our laboratory's data and thinking (and hence also for this paper) has been directed toward viruses and viral vaccines, generalization to other pathogens and disease entities (i.e., anti-cancer vaccines) may be appropriate
    corecore