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Data-driven predictive control with improved
performance using segmented trajectories

E. O’Dwyer*, E. C. Kerrigan, P. Falugi, M. A. Zagorowska and N. Shah

Abstract— A class of data-driven control methods has
recently emerged based on Willems’ fundamental lemma.
Such methods can ease the modelling burden in control
design but can be sensitive to disturbances acting on the
system under control. In this paper, we extend these meth-
ods to incorporate segmented prediction trajectories. The
proposed segmentation enables longer prediction horizons
to be used in the presence of unmeasured disturbance. Fur-
thermore, a computation time reduction can be achieved
through segmentation by exploiting the problem structure,
with computation time scaling linearly with increasing hori-
zon length. The performance characteristics are illustrated
in a set-point tracking case study in which the segmented
formulation enables more consistent performance over a
wide range of prediction horizons. The computation time
for the segmented formulation is approximately half that of
an unsegmented formulation for a horizon of 100 samples.
The method is then applied to a building energy manage-
ment problem, using a detailed simulation environment, in
which we seek to minimise the discomfort and energy of a
6-room apartment. With the segmented formulation, a 72%
reduction in discomfort and 5% financial cost reduction is
achieved, compared to an unsegmented formulation using
a one-day-ahead prediction horizon.

Index Terms— Data-driven predictive control, optimal
control, building energy management, Willems’ fundamen-
tal lemma

I. INTRODUCTION

THE increased focus on digital technology in recent times
has drawn attention to data-driven control methods, with

applications ranging from building control [1], to autonomous
vehicles [2]. By reducing the modelling burden in the control
design phase, the deployment of advanced control can be
streamlined, with control decisions directly obtained from data
measurements [3]. In data-rich environments, such methods
may then be advantageous. Nonetheless, these approaches can
often lack the theoretical foundations of both model-based and
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indirect data-driven methods, such as system-identification,
whereby data is used to derive a model for control [4].

Willems’ fundamental lemma [5], has been used as a foun-
dation for a large body of data-driven control research, with
predictive control representations recently developed that can
offer stability and certain robustness guarantees [4], without
requiring the derivation of a parametric model. For example,
a data-enabled predictive control formulation was proposed
in [6] and shown to be competitive with Model Predictive
Control in the deterministic case. In [7], an equivalence was
then shown between this direct data-driven approach and an
alternative indirect approach, in which the parameters of a
multi-step prediction model are derived using the same training
data criteria. This was expanded upon in [8], where further
analysis of the performance of these direct and indirect for-
mulations was carried out for different systems using various
relaxation and regularisation techniques. The results suggested
that noisy data have a greater impact on direct formulations,
while system nonlinearities have a greater impact on indirect
formulations. Additionally, rather than relying on a single
training period for data acquisition, a strategy was developed
in [9] by which multiple, potentially short, datasets can be
used instead, without compromising the theoretical foundation
of the fundamental lemma.

Uncertainty in data measurements will impact the per-
formance of a data-driven approach, thus several methods
have been developed to ensure viability in stochastic settings.
In [10], the authors supplement a data-driven controller with
a data-driven extended Kalman filter to reduce sensitivity to
noise. Robust formulations have also been developed to enable
performance guarantees under certain conditions of system
stochasticity, such as the robust modification proposed in [11],
ensuring exponential stability in the presence of measurement
noise. In [12], a chance-constrained distributionally robust
formulation was developed for stochastic linear, time-invariant
(LTI) systems, providing probabilistic guarantees on perfor-
mance. Tractable, robust formulations are proposed to en-
sure performance guarantees under uncertainty in [13], while
in [14], a correspondence was found between the fundamental
lemma perspective and that of System-Level Synthesis (SLS),
which was then exploited to formulate a robust closed-loop
data-predictive controller. A robust building-level controller
was implemented in [15].

Apart from LTI systems, approaches based on the funda-
mental lemma have been extended to include systems with
time-varying parameters [16]. Furthermore, by combining
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these approaches with the perspective of Koopman operator
theory, it was shown in [17] that control of nonlinear systems
can be achieved within a data-driven framework. Integral
action was additionally incorporated into approaches proposed
in [18] and [19], thus ensuring offset-free tracking.

In the presence of noise or unmeasured disturbances, data-
driven models can be prone to overfitting, particularly if they
are over-parameterised [20]. An under-explored consideration
in the development of data-driven predictive controllers of this
type is the link between the prediction trajectory length and
the number of parameters, and how this relates to the control
performance. Though parameters are not explicitly identified
in direct formulations, an implicit model identification step is
carried out in the regularised form as discussed in [7] and [8],
leading to an equivalent, implicit, parametric representation.
Prediction of longer trajectories may lead to an impaired
performance under uncertainty, since the number of parameters
in this representation is related to the length of the prediction
horizon in the standard data-enabled predictive controller
formulations.

In this paper, we present a formulation in which the predic-
tion trajectory is divided into multiple shorter trajectories (de-
noted segments). These segments can be identified in the same
manner as the unsegmented formulation, with less training
data and less computational effort by exploiting the problem
structure. This novel segmentation approach decouples the link
between the number of implicit model parameters and the
prediction horizon length, thus making the formulation less
sensitive to noise and disturbance in the training data. The
method is analysed and compared to the unsegmented version
in a set-point tracking case study with different regularisation
parameters and horizon lengths. A performance improvement
is shown in terms of set-point tracking error and compu-
tational time requirement. Following this, a building energy
management case study is implemented, based on a detailed
building simulation environment with realistic disturbances.
Comfort and energy cost objectives are solved in a prioritised
manner. As the segmented-trajectory approach behaves more
consistently than the unsegmented approach for longer horizon
lengths, a reduction in both cost and energy consumption is
achieved for a one-day-ahead prediction horizon.

In Section II, a background to the unsegmented data-driven
predictive approach is provided based on the fundamental
lemma, followed by the proposed modifications that result in
a segmented formulation. In Section III, a set-point tracking
case study is presented, with an analysis provided of the
control performance and computational time associated with
the segmented and unsegmented formulations. This is followed
in Section IV by the building energy management case study,
which is used to illustrate the benefits of the segmented
formulation in a relevant application. The paper ends with
conclusions in Section V.

II. MODIFIED DATA-DRIVEN PREDICTIVE CONTROL
FORMULATION

A. Data-driven predictive control preliminaries
As noted in the introduction, different variations of data-

predictive control have been proposed. We provide a brief

overview of the direct data-enabled predictive controller of [6]
and the indirect multi-step prediction approach of [7] and [8]
in this section.

A discrete-time nth-order LTI state-space system can be
represented at sample instant k by:

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k],
(1)

where x[k] ∈ Rn is the system state-vector, u[k] ∈ Rm and
y[k] ∈ Rp are the input and output vectors, respectively, and
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are
parameter matrices, the parameters of which are assumed to
be unknown. Following the terminology of [21], we define B
as the behaviour of (1), where the behaviour is defined as
the set of possible outcomes of the system. The lag of the
system is denoted `, defined as the smallest integer for which
the observability matrix O`(A,C) :=

[
C,CA, . . . , CA`−1

]
has full rank. By Willems’ fundamental lemma [5], arbitrary
input and output sequences can be derived from a sufficiently
long set of input/output data without explicitly estimating the
parameters of (1). The input output sequences will be called
trajectories. A representation of the system can then be found
and used for predictive control only in terms of measured data.

An offline data collection procedure is carried out to achieve
this in which T0 ∈ Z>0 sequences of persistently exciting
input and output data measurements are given as utr =[
uT1 , . . . , u

T
T0

]T ∈ RmT0 and ytr =
[
yT1 , . . . , y

T
T0

]T ∈ RpT0

respectively with Z>0 denoting the set of positive integers. A
trajectory w is defined as persistently exciting of order L0,
L0 ∈ Z>0, if the Hankel matrix HL0

(w) is of full row-rank
with

HL0(w) :=

 w1 · · · wT0−L0+1

...
. . .

...
wL0

· · · wT0

 . (2)

Note that non-square Hankel matrices are permitted in this
definition. From [5], for a controllable, observable B, if
w ∈ B is a persistently exciting, T0-samples-long trajectory
of order t+n, then any t-samples long trajectory in B can be
described as a linear combination of the columns of Ht(w),
and any Ht(w)g is a trajectory of B where g ∈ RT−t+1. For
persistent excitation, T0 ≥ (m+1)(t+n)−1. Here we seek to
construct trajectories of length N+Tini, where N ∈ Z>0 is the
prediction horizon and Tini ∈ Z is some initialisation length.
Following [22, Lem. 1], by fixing the first Tini samples of a
trajectory, the subsequent N samples are uniquely specified
if Tini ≥ `.

The training data sequences utr and ytr are arranged in the
Hankel form of (2) with T0 ≥ (m + 1)(Tini + N + n) − 1
and L0 = Tini + N .The training data structures can then be
defined at this point as Utr := HTini+N (utr) and Ytr :=
HTini+N (ytr). These matrices are then partitioned such that
the first Tini block rows of Utr and Ytr are denoted by the
subscript α and are referred to as initialisation data, with the
remaining rows denoted by β and referred to as prediction
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data. The partitioned data matrices are thus defined as[
Uα
Uβ

]
:= HTini+N (utr),[

Yα
Yβ

]
:= HTini+N (ytr).

(3)

Defining initialisation sequences uini ∈ RmTini and yini ∈
RpTini as the Tini most recent measurements, any future
trajectories uf ∈ RmN and yf ∈ RpN can be found as the
solution to 

Uα
Uβ
Yα
Yβ

 g =


uini
uf
yini
yf

 , (4)

where g ∈ RT0−Tini−N+1.
This leads to the insight that uf and yf , the future tra-

jectories of B, can be found for a given training data set
and given initialisation trajectories uini and yini. From this,
a Data-enabled Predictive Control (DeePC) formulation was
proposed in [6], whereby the following optimisation is carried
out:

min
g,uf ,yf

V (g, uf , yf ) (5)

s.t. 
Uα
Uβ
Yα
Yβ

 g =


uini
uf
yini
yf

 (6)

uf ∈ U (7)
yf ∈ Y (8)

with V (·) representing an objective to be minimised and
U and Y representing the input and output constraint sets,
respectively.

Whereas model parameters are not explicitly derived in this
formulation, an equivalence was identified in [7] and [8] be-
tween this form and a predictive control formulation based on a
multi-step prediction model derived from data. This multi-step
model version is referred to in [8] as an indirect data-driven
formulation, in contrast to direct data-driven formulations in
which no model is identified such as in (5)–(8).

Using the indirect formulation, the same training data struc-
tures can be used, but here they are used to derive a multi-step
predictor P ∗ by the least-squares method as

P ∗ = argmin
P

∣∣∣∣∣∣
∣∣∣∣∣∣P
UαUβ
Yα

− Yβ
∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

, (9)

where ||·||F denotes the Frobenius norm. Using the Moore-
Penrose inverse (denoted †), this can be expressed explicitly
as

P ∗ := Yβ

UαUβ
Yα

† . (10)

This predictor can then be used to derive future trajectories
as

yf = P ∗

uiniuf
yini

 . (11)

To examine the model defined by (11) in Section II-B, it is
useful here to define a partitioned version of P ∗, given as[
P ∗1 P ∗2 P ∗3

]
where P ∗1 ∈ RpN×mTini is associated with

the initialisation input trajectory, P ∗2 ∈ RpN×mN is associated
with the future input trajectory and P ∗3 ∈ RpN×mTini is
associated with the initialisation output trajectory.

An indirect data-driven predictive control formulation can
then be represented by replacing (4) with (11). Additional
conditions can be applied to enforce causality in the model.

In the following section, both the direct and indirect meth-
ods summarised here will be used to illustrate the rationale
of a modified version of the data-predictive control approach,
which is the main contribution of this work.

B. Segmentation of prediction trajectory

Over-parameterisation of a model can impede prediction
performance in the presence of uncertainties, such as noise,
nonlinearities, or unmeasured disturbances in the system under
control. In the context of the data-driven controller described
in Section II-A, relaxations of the initialisation constraints and
regularisation of the optimisation variables can be introduced
to improve performance in this regard in the direct formula-
tion. Similarly, slack variables can be introduced to the indirect
form.

Nonetheless, the number of parameters of P ∗2 ∈ RpN×mN
in the indirect form increases with the horizon length. For ex-
ample, the final entry of the predicted output sequence, yf [N ],
is a function of N preceding inputs (uf [1], . . . , uf [N ]).
Thus, for longer prediction horizons, the impact of over-
parameterisation may become more pronounced, as will be
shown in the illustrative example in Section III. In the direct
formulation, model parameters are not explicitly derived;
however, in [7] it is reasoned that the same model is implicitly
identified in the direct form as the indirect form leading to the
same performance drop for longer horizons. It should be noted
that with perfect data, the fixing of uini and yini, ensures a
unique representation of uf and yf and thus the issue does
not arise.

A modification is proposed here whereby the prediction
trajectory is divided into segments of length Tini (with Tini ≤
N ) to decouple the relationship between horizon length and
the number of parameters (implicit parameters in the direct
formulation, explicit parameters in the indirect formulation),
thereby ensuring better scalability to problems with longer
prediction horizons. The key insight here is that by assuming
the system does not change over the prediction horizon, we
can construct the full horizon using shorter trajectories. Each
prediction trajectory acts as the initialisation trajectory for its
subsequent segment.

The shorter trajectories used in this formulation necessitate
a change in the training data matrix definitions. In Section II,
T0 dictates the training length, where the conditions T0 ≥
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(m+1)(Tini+N+n)−1 and Tini ≥ ` were imposed. For the
segmented form, we replace T0 with Ta. Since each segment is
at most of length Tini, rather than N (the final segment may be
shorter), we now impose Ta ≥ (m+1)(2Tini+n)−1. Notably,
for Tini < N a shorter training period is then sufficient.

The updated training sequences are then defined as utrs =[
uT1 , . . . , u

T
Ta

]T ∈ RmTa and ytrs =
[
yT1 , . . . , y

T
Ta

]T ∈ RpTa

and the associated Hankel matrices are defined as[
Uαs

Uβs

]
:= H2Tini(utrs),[

Yαs

Yβs

]
:= H2Tini

(ytrs),

(12)

with Uαs
∈ RmTini×(Ta−2Tini+1), Yαs

∈
RpTini×(Ta−2Tini+1).

The trajectories uf and yf are partitioned into F segments

given as
[
uTf1 , . . . , u

T
fF

]T
= uf and

[
yTf1 , . . . , y

T
fF

]T
=

yf respectively, where ufi ∈ RmTini and yfi ∈ RpTini ,
∀i ∈ {1, . . . , F − 1}, and the final segments ufF ∈
Rm(N−(F−1)Tini) and yfF ∈ Rp(N−(F−1)Tini). Equation 4
can then be replaced by the following equations with uini
and yini replaced by uf0 and yf0 , respectively, for notational
brevity:

Uαs

Uβs

Yαs

Yβs

 gi =

ufi−1

ufi
yfi−1

yfi

 , ∀i ∈ {1, . . . , F − 1}, (13)

where gi ∈ RTa−2Tini+1, ∀i ∈ {1, . . . , F}. The equation
associated with the final segment is given as

Uαs

Ũβs

Yαs

Ỹβs

 gF =


ufF−1

ufF
yfF−1

yfF

 , (14)

where Ũβs
and Ỹβs

represent the first N − (F − 1)Tini block
rows of Uβs

and Yβs
, respectively. A diagram illustrating

the segmentation concept is shown in Fig. 1 for a prediction
trajectory divided into three segments.

Using (13) and (14) to predict future input and output
trajectories of the system, we can formulate a predictive
controller in which we seek to minimise a cost function given
as Vs(·) by solving

min
g1,...,gF

F∑
i=1

Vs(gi) (15)

s.t.[
Uαs

Yαs

]
g1 =

[
uf0
yf0

]
(16)[

−Uβs
Uαs

−Yβs
Yαs

] [
gi−1
gi

]
= 02Tini

, ∀i ∈ {2, . . . , F} (17)

Uβsgi ∈ U , ∀i ∈ {1, . . . , F} (18)
Yβsgi ∈ Y, ∀i ∈ {1, . . . , F} (19)

where 0a denotes a column of zeros of length a. No penalty
on the input is included. It should be noted that this problem

uini uf

NTini

(a)

uf0 uf1 uf2 uf3

NTini

Tini Tini N-2Tini

(b)

Fig. 1: Illustration of data-driven control approach (a) without
and (b) with segmentation of prediction trajectory

is partially separable, unlike the unsegmented version. With
a suitable choice of optimisation solver, a linear increase in
computation time can be achieved for an increasing F . This
is shown empirically in Section III.

In a similar manner, this segmented perspective can be
applied to the indirect formulation. We now denote the multi-
step predictor matrix as P ∗s , which can be found as

P ∗s = Yβs

Uαs

Uβs

Yαs

† . (20)

The first F − 1 segments of the prediction trajectory can then
be found as

yfi = P ∗s

ufi−1

ufi
yfi−1

 , ∀i ∈ {1 . . . , F − 1}. (21)

The final segments ufF and yfF are of length m(N − (F −
1)Tini) and p(N − (F − 1)Tini) respectively. To obtain these
segments, P ∗s is partitioned as

[
P ∗s1 P ∗s2 P ∗s3

]
where P ∗s1 ∈

RpTini×mTini , P ∗s2 ∈ RpTini×mTini and P ∗s3 ∈ RpTini×mTini .
If N is not a multiple of Tini, this final segment will be shorter
than all preceding segments and the final p(FTini −N) rows
must be omitted from P ∗s1, P ∗s2 and P ∗s3 and m(FTini −
N) columns and must be omitted from P ∗s2. These reduced
matrices are represented by the accent ·̃, and the multi-step
model of this segment is then given as

yfF =
[
P̃ ∗1 P̃ ∗2 P̃ ∗3

] ufF−1

ufF
yfF−1

 . (22)
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Fig. 2: Two-mass system with springs and dampers

A key feature of this segmented representation can be
seen by comparing the dimensions of P ∗s2 with P ∗2 . With-
out segmentation, the number of parameters grows with an
increasing prediction horizon. By decoupling the number of
parameters from the prediction horizon length, we propose
that the segmented formulation will perform better than the
unsegmented formulation in problems with longer prediction
horizons in the presence of unmeasured disturbance. The
same underlying model is derived for all horizon lengths. The
performance impact is examined in detail in the following
section in which different versions of the formulation are
applied to a simple example under a wide range of conditions.

III. ILLUSTRATIVE EXAMPLE: TWO-MASS SYSTEM

A. System description
A two-mass-spring-damper example is used to illustrate the

performance of the segmented predictive controller compared
with the unsegmented version. The code needed to reproduce
these examples is available on Code Ocean. The system
comprises two masses, two springs and two dampers, and is
described in the following equations:

ẋ(t) = Ax(t) +B (u(t) + d(t)) , (23)

where x = (y1, y2, ẏ1, ẏ2) with y1 and y2 representing the
displacement of masses m1 and m2 respectively (shown in
Fig 2) and u(t) is the input force applied to the mass m1.
An additional disturbance d(t) can be applied to m1. The
parameter matrices A and B are given as

A =


0 0 1 0
0 0 0 1

−(k1+k2)
m1

k2
m1

−(c1+c2)
m1

c2
m1

k2
m2

−k2
m2

c2
m2

−c2
m2

 , B =


0
0
1
m1

0

 ,
(24)

where the masses are defined m1 = 0.5 and m2 = 1.5, the
spring constants are defined as k1 = 2 and k2 = 2 and the
damping constants are defined as c1 = 1 and c2 = 1. The
system is shown in Fig. 2.

We investigate a case study using this system whereby we
seek to control the displacement y2 to track a set-point ysp, by
calculating an input trajectory u using a data-driven predictive
controller. We adopt a direct data-driven formulation and
compare segmented and unsegmented versions of the strategy
in scenarios with and without a time-varying unmeasured dis-
turbance d applied to m1. The system is analysed for various
hyper-parameter choices, specifically the prediction horizon
and the regularisation weight. A one-second sample time is

used for the predictive controller, with input and disturbance
signals held constant for the duration of the sample. The input
force is constrained to the interval [−1, 1] and results are
compiled from a 100-second run.

B. Prioritised objective formulation

To handle the regularisation, relaxation and set-point devi-
ation penalties, a prioritised framework is used as described
in [23]. The problem is solved in two stages, first a feasibility
stage followed by a set-point deviation minimisation. The
first optimisation minimises the initialisation slacks given as
εfi ∈ RTini , ∀i ∈ {1, . . . , F}. The objective and constraints
of this linear problem are defined as follows:

J∗1 := min
g1 . . . , gF ,
εf1

, . . . , εfF

F∑
i=1

Tini∑
j=1

εfi,j (25)

s.t.

Uαsg1 = uf0 (26)[
Yαs

−Yαs

]
g1 −

[
εf1
εf1

]
≤
[
yf0
−yf0

]
(27)

[
−Uβs

Uαs

] [gi−1
gi

]
= 0Tini

, ∀i ∈ {2, . . . , F} (28)

[
−Yβs Yαs

] [gi−1
gi

]
− εfi ≤ 0Tini

, ∀i ∈ {2, . . . , F} (29)

[
Yβs

−Yαs

] [gi−1
gi

]
− εfi ≤ 0Tini , ∀i ∈ {2, . . . , F} (30)

−εfi ≤ 0Tini
, ∀i ∈ {1, . . . , F} (31)

Uβs
gi ∈ U , ∀i ∈ {1, . . . , F} (32)

Yβs
gi ∈ Y, ∀i ∈ {1, . . . , F}. (33)

The second optimisation objective is composed of a penalty
on the sum of the absolute deviation of the output from the set-
point, given as εy ∈ RN , and a regularisation penalty on g with
the relative weight between the two penalties set by choice
of λg > 0. The quadratic objective and linear constraints of
this problem are given as

J∗2 := min
g1 . . . , gF , εy ,
εf1

, . . . , εfF

N∑
j=1

εyj + λg

F∑
i=1

gTi gi (34)

s.t.

(26)–(33)
F∑
i=1

Tini∑
j=1

εfi,j ≤ J∗1 (35)

[
IF ⊗ Yβs

−IF ⊗ Yβs

]g1...
gF

− [εyεy
]
≤

[
ysp
−ysp

]
(36)

−εy ≤ 0N , (37)

where ⊗ denotes the Kronecker product and IF denotes the
identity matrix of size F .
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Fig. 4: Set-point tracking using the segmented formulation
with and without unmeasured disturbance present and the un-
segmented formulation with unmeasured disturbance present

In the unsegmented formulation, F = 1, constraints (28),
(29) and (30) are omitted and αs and βs subscripts are replaced
by α and β respectively.

To generate training data, the system was simulated in open-
loop with the input u varied at 10-second intervals by drawing
a sample from a uniform distribution in the interval [−1, 1] to
generate a persistently exciting training set of input and output
data. A disturbance signal, which acts as the unmeasured
disturbance, was also generated and applied to the system.
This disturbance was composed of a sinusoidal component
and a uniformly distributed random noise component. Fig. 3
shows the training input and disturbance signals.

Fig. 4 shows the set-point tracking performances of the
unsegmented and segmented versions of the data predictive
controller as well as a scenario in which no unmeasured
disturbance was present. In all cases, N = 30, Tini = 5
and λ = 0.5. The set-point to be tracked is plotted as a
dashed black line. Excellent tracking performance can be
observed for the undisturbed scenario. In the presence of
the disturbance, the performance degrades, but the segmented
version outperforms the unsegmented version. The following
sections explore this in greater detail.

C. Performance analysis: No disturbance present

Since the formulation can be sensitive to the choice of
hyper-parameters, a more detailed analysis was next carried
out whereby different hyper-parameter choices (specifically
the prediction horizon N , the regularisation weight λg and the
initialisation/segment length Tini) were used, with the tracking
performance quantified for each as the sum of the absolute set-
point deviations at each time step. This analysis was done for
scenarios with and without the presence of disturbance, but
we first present the undisturbed case with d = 0.

Fig. 5a shows the tracking performance of both segmented
and unsegmented in the disturbance-free case under a range of
prediction horizon from 5 to 100 seconds. In the unsegmented
case, slight performance degradation can be seen with longer
prediction horizons. This trend is not present in the segmented
version. By varying the regularisation parameter λg , it can
be seen in Fig. 5b that in both segmented and unsegmented
cases, scenarios with smaller values of λg outperform those
with larger values. This implies, as expected, that high reg-
ularisation penalties are not needed with perfect data and no
disturbance. As λg increases, the performance of both formu-
lations degrade as the relative weight on set-point deviation
decreases. The choice of Tini dictates the initialisation length
of both cases and the segment length of the segmented version.
Scenarios with Tini ≤ 5 perform well in both segmented and
unsegmented cases as shown in Fig. 5c.

D. Performance analysis: Unmeasured disturbance
present

With unmeasured disturbances now present, the same sce-
narios are simulated, with a greater performance gap emerging
between the segmented and unsegmented formulations. In all
cases, the set-point error is larger for disturbed scenarios than
for undisturbed scenarios, as expected. Fig. 6a shows the
performance of both formulations for a range of prediction
horizons. The performance of the segmented version remains
consistent across all horizon lengths. This is not true for the
unsegmented case, for which significantly larger errors can be
seen with horizons longer than 20 seconds.

Fig. 6b shows the performances achieved for different reg-
ularisation penalties. Unlike in the undisturbed case, a certain
degree of regularisation is necessary, with very small values
of λg corresponding to large set-point errors. Furthermore,
the performance of the segmented version exceeds that of the
unsegmented version across a wide range of values. A well
chosen λg leads to improved performance of the segmented
approach, as seen for λ ≈ 0.5. In contrast, the performance
of the unsegmented approach remains poor regardless of the
choice of λg . We can also see in Fig. 6c that the choice of
Tini has a similar impact in both segmented and unsegmented
cases. In both cases, the best performance is achieved for
Tini = 5 while for Tini < 4 and Tini > 10, the performance
drops significantly.

The key outcome of these examples is that the performance
of the segmented formulation exceeds that of the unsegmented
version when unmeasured disturbances are present, without
compromising performance when they are not.
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Fig. 5: Comparison between segmented and unsegmented
formulations for undisturbed two-mass spring-damper system
varying (a) prediction horizons, (b) regularisation weight and
(c) initialisation length

E. Performance analysis: Computation time

As the problem structure of the segmented version is now
different to the unsegmented case, it is worth considering
the computational time required for each. The structure of
the segmented problem allows for the problem sparsity to
be exploited, leading to a potential reduction in computation
time. This was examined by finding the average computation
time (over 100 runs) needed for the second-level quadratic
optimisation, with various prediction horizons (with λg = 0.5
and Tini = 5 for all cases). All scenarios were computed
using the quadprog function, with the interior-point-convex
algorithm, using the sparse setting for the internal linear
solver in Matlab on a 2.9 GHz processor, with the results
shown in Fig. 7. For N = 100, it can be seen that the
unsegmented version computation time is almost double that
of the segmented version.

A wider range of prediction horizons are plotted on a log-
log-scale plot in Fig. 8, in which we can see the slope of the
computation time increase associated with the unsegmented
version is approximately one, implying a linear time increase
with horizon length. For the unsegmented case, the slope
approaches three for longer horizons, implying a cubic time
increase for increasing horizon length.
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Fig. 6: Comparison between segmented and unsegmented
formulations for two-mass spring-damper system with unmea-
sured disturbance varying (a) prediction horizon, (b) regulari-
sation weight and (c) initialisation length
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Fig. 7: Computational time for segmented and unsegmented
formulations
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Analysis of the simple case study shows the benefits of
splitting the time horizon into segments. A more realistic case
study is next examined.

IV. APPLICATION TO BUILDING ENERGY MANAGEMENT

A. The building energy management challenge
An active area of research in recent times concerns the

use of predictive control for building energy management.
Modern energy systems require more flexibility to handle the
combined influences of increased renewable generation and
increased electrification of heating and transport. Making use
of buildings as active, flexible components in such an energy
landscape is a key requirement in global decarbonisation
efforts [24]. Despite the pressing need for advanced control
technologies, the underlying model complexity of a building
and the wide variation in building designs has led to the
model development process acting as a significant barrier to
technology uptake [25]. Consequently, data-driven predictive
control techniques have recently received attention for the
application of building energy management [26].

The segmented formulation proposed in this paper is suited
to this domain. Diurnal building usage and energy tariff
patterns, along with the slow thermal dynamics of well-
insulated buildings, make longer prediction horizons advan-
tageous. Furthermore, many disturbances tend to impact the
energy demand of a building. Measurements of these may not
be available. External temperature, solar radiation and inter-
nal gains will influence the building’s behaviour, potentially
corrupting the ability of a data-driven algorithm to identify
input/output behaviour from a given data-set. A simulated
case study was carried out to investigate the performance
of the segmented formulation in this setting, using state-
of-the-art EnergyPlus [27] building simulation software and
comparing the performance of the unsegmented and segmented
formulations.

B. Building simulation environment
A popular technique for building thermal simulation is

to represent the structure as a Resistance Capacitance (RC)
network [28], particularly when knowledge of the physical
composition of the building is available. The materials making
up the walls, floors, ceilings, and windows are represented
as configurations of resistances and capacitances whereby
current flows through the circuit are analogous to heat flows
through building components. Here, an EnergyPlus model of
a six-room apartment was created based on standard building
materials and thermal behaviour characteristics taken from
the Tabula Webtool [29], and the underlying thermal model
was extracted using the Building Resistance-Capacitance Mod-
elling (BRCM) toolbox [30]. This resulting thermal model can
be represented as a 102-state, linear, state-space system with
six inputs (radiators in each room) and six outputs (the room
temperatures). A schematic of the apartment layout can be
seen in Fig. 9.

The building model is influenced by the ambient temper-
ature and solar irradiance from different orientations. For
this, weather data from a London-based weather station was

Fig. 9: Schematic of six-room apartment used for the building
energy case study

obtained from the CEDA archive [31]. The occupancy pro-
file used in the simulation was taken from the occupancy-
integrated archetype approach of [32]. During occupied peri-
ods, a comfort set-point band between 20◦C and 22◦C was
desired, while in unoccupied times, the temperatures were
allowed to vary between 16◦C and 26◦C. The input in each
room was constrained between 0 and the upper heat supply
limit of the radiator in the room. The radiators were sized to
emit a maximum of 100W per m2 of floor area. The simulation
ran with a 10-second sample time.

A separate data-driven predictive controller in each room
with a sample time of 15 minutes was used to dictate the
heat flow from the radiator to the room. The future set-point
requirements were known to the controllers, as well as the
current and previous room temperature and heat flow mea-
surements. No measurements or forecasts of the weather were
available to the controllers. A training period was carried out
in which the radiators attempted to track a set-point varying
between the upper and lower set-point bounds, using a PI
controller. Note that this approach implies that the comfort set-
point bounds should not be violated during the training period.
The length of the training period depended on the formulation
used (segmented or unsegmented) and the prediction horizon
chosen for a particular scenario.

A set of scenarios were designed to compare the perfor-
mance of the segmented and unsegmented formulations using
different prediction horizons in this simulation environment.
For these scenarios, we seek to minimise the deviation of the
room temperatures outside the comfort bounds at a minimal
cost. It was assumed that a heat pump supplies heat to the
radiators with a Coefficient of Performance (COP) of 2.5,
with electricity purchased via a time-varying tariff. For this,
wholesale electricity price data was used with the Octopus
Agile pricing tariff mechanism applied [33].

The formulation of Section III was modified slightly to
incorporate an energy cost in the objectives. Once again, a
prioritised framework was used, with the slack variables min-
imised first, followed by discomfort minimisation in a second
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Fig. 10: Cost and comfort objectives for different prediction
horizons using segmented and unsegmented formulations

optimisation, before finally minimising energy cost. The first
two optimisation levels are formulated as in (25)–(37). The
financial cost is considered in the third optimisation problem.
The predicted electricity price for the period from k + 1
to k +N is given as Celec = (c[k + 1], . . . , c[k +N ]) ∈ RN .
The predicted electricity cost for heat pump consumption
associated with the room over the prediction horizon was then
included in the third-level objective as follows:

min
g1 . . . , gF , εy ,
εf1

, . . . , εfF

ηCelecIF ⊗ Uβs

g1...
gF

+ λg

F∑
i=1

gTi gi, (38)

where η denotes the heat pump COP.
The constraints for this third-level problem are the same

as for the second-level problem, with an additional constraint
needed to enforce the optimal comfort performance, given as

||εy||1 ≤ ||ε∗y||1, (39)

where ε∗y is the optimal εy computed in the second-level
optimisation problem.

A decentralised architecture was used, in which each room
has a separate controller and no communication between
controllers occurs.

C. Performance analysis of data-driven controllers

Simulations were carried out to analyse the performance
of the controllers for a three-week period using different pre-
diction horizon lengths with the segmented and unsegmented
formulations. Prediction horizons from 10 samples (2.5 hours)
to 95 samples (1 day) are investigated. In all cases, Tini = 5
and λg = 1 as these values were found to perform best for
both segmented and unsegmented formulations. The results
are summarised in Fig. 10, where the total heating cost for
the apartment is plotted on the Y-axis and a discomfort metric
is plotted on the X-axis. This discomfort metric is defined
as the summation of absolute deviations from the comfort
temperature set-point band, summed across each zone, scaled
appropriately to achieve units of ◦C·hr.

Because the comfort objective has a higher priority than
the financial objective, it should be expected that a longer
prediction horizon would result in improved comfort, since
pre-heating can be better exploited. This improvement in com-
fort may come at a financial cost, however. In the segmented
formulation, this trend is clearly visible in Fig. 10, Table I

TABLE I: Discomfort metric for unsegmented and segmented
formulations with different horizons (3-week simulation)

N = 10 N = 20 N = 40 N = 60 N = 95

Unsegmented
(◦C·hr) 338 290 260 695 628

Segmented
(◦C·hr) 290 237 186 176 174

TABLE II: Heating cost for unsegmented and segmented
formulations with different horizons (3-week simulation)

N = 10 N = 20 N = 40 N = 60 N = 95

Unsegmented
(£) 58.3 58.7 61.3 57.6 62.8

Segmented
(£) 58.7 58.5 59.1 59.3 59.4

and Table II. Each increase in horizon length leads to a
slight comfort improvement, with diminishing returns. The
unsegmented formulation produces a similar (with slightly
higher discomfort) performance for horizon lengths of 10
and 20 samples. Beyond this, the comfort performance varies
without a clear pattern. The underlying values are summarised
in Table I.

From a financial cost perspective, higher discomfort levels
can imply an insufficient heat supply and thus lower heating
cost. This can be seen in the unsegmented scenario with N =
60 in Fig. 10. Although the lowest financial cost is achieved,
this is accompanied with a significant increase in discomfort,
indicating that the controllers are not carrying out their primary
objective and the low financial cost is a consequence of
poor control performance (i.e., under-heating). The segmented
formulation performance is far more consistent, with slight
improvements in comfort accompanied by slight increases in
heating cost as the horizon lengths increase. In the N = 95
case, the segmented approach reduced discomfort relative to
the unsegmented approach by 72%, with a 5% cost reduction.
Table II summarises the financial results.

A one-week window of the average apartment temperatures
using N = 95 with the segmented and unsegmented formu-
lations is plotted in Fig. 11 to illustrate the differing control
performance. The electricity price for the same period is also
shown. The unsegmented formulation overheats the apartment
during the unoccupied periods compared to the segmented
formulation. In both formulations, the controllers tend to pre-
heat the apartment in advance of an electricity price spike.
This behaviour is more effective in the segmented version, as
the unsegmented case does not allow the temperatures to drop
low enough to fully make use of the thermal energy inherently
stored in the building.

As in the examples of Section III, the performance of the
unsegmented strategy breaks down as the prediction horizon
length increases, while the segmented formulation is more
consistent in a wider range of operational strategies.

V. CONCLUSIONS

This paper proposes an extension to a data-driven predic-
tive control formulation for linear systems with unmeasured
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Fig. 11: Average room temperature in building with segmented
and unsegmented formulations, plotted for one week of the
simulation period (N = 95), and corresponding external
weather conditions and electricity price profile for the period

disturbances. The proposed formulation modifies an existing
data-enabled predictive control approach by segmenting the
prediction horizon to decouple the number of implicit model
parameters from the prediction horizon length. By doing
so, the formulation performs better than the unsegmented
formulation in the presence of unmeasured disturbance with
longer trajectories.

The method was analysed here first using a set of case
studies based on a two-mass-spring-damper system. Under
various hyper-parameter choices, the segmented formulation
outperformed the unsegmented formulation in terms of set-
point tracking when disturbances were present, particularly
with longer prediction horizons. Comparable performance was
achieved in disturbance-free cases. The computation time
associated with the proposed segmented formulation scales
linearly with horizon length, improving on the time increase
observed for the unsegmented formulation. For a scenario
with a 100-sample horizon, computation time is approximately
halved by using a segmented formulation.

The segmented formulation was applied to a building energy
management case study to demonstrate the importance of
these performance characteristics in a more realistic setting,
using a state-of-the-art building simulation environment with
realistic weather profiles acting as unmeasured disturbances.
The segmented formulation performed more consistently with
horizon length variation in terms of occupant comfort levels
and energy consumption. For a scenario with a one-day-
ahead prediction horizon, the segmented approach reduced
discomfort relative to the unsegmented approach by 72%, with
a 5% cost reduction.

Further work is needed to assess the impact of segmentation
on the various extensions of the data-predictive controller that
have been developed, such as formulations with robustness

guarantees and formulations for time-varying parameters and
nonlinear systems. Additionally, methods for offset-free con-
trol in the presence of disturbance would also be beneficial to
the data-driven context. Computational efficiency and hyper-
parameter selection are also key aspects that require further
focus to ensure algorithms that are tailored appropriately to a
given context.
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[16] C. Verhoek, H. S. Abbas, R. Tóth, and S. Haesaert, “Data-Driven
Predictive Control for Linear Parameter-Varying Systems,” 2021.
[Online]. Available: http://arxiv.org/abs/2103.16160

[17] Y. Lian, R. Wang, and C. N. Jones, “Koopman based data-driven
predictive control,” vol. XX, no. Xx, pp. 1–11, 2021. [Online].
Available: http://arxiv.org/abs/2102.05122
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