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Abstract: Existing methods for nonlinear robust control often use scenario-based approaches
to formulate the control problem as nonlinear optimization problems. Increasing the number
of scenarios improves robustness, while increasing the size of the optimization problems.
Mitigating the size of the problem by reducing the number of scenarios requires knowledge
about how the uncertainty affects the system. This paper draws from local reduction methods
used in semi-infinite optimization to solve robust optimal control problems with parametric
uncertainty. We show that nonlinear robust optimal control problems are equivalent to semi-
infinite optimization problems and can be solved by local reduction. By iteratively adding
interim globally worst-case scenarios to the problem, methods based on local reduction provide
a way to manage the total number of scenarios. In particular, we show that local reduction
methods find worst case scenarios that are not on the boundary of the uncertainty set. The
proposed approach is illustrated with a case study with both parametric and additive time-
varying uncertainty. The number of scenarios obtained from local reduction is 101, smaller than
in the case when all 214+3×192 boundary scenarios are considered. A validation with randomly
drawn scenarios shows that our proposed approach reduces the number of scenarios and ensures
robustness even if local solvers are used.

Keywords: Optimization, Mathematical programming, Trajectory optimization, Uncertainty,
Iterative methods, Numerical simulation, Robust control

1. INTRODUCTION

Robust nonlinear optimal control problems are often
solved using a scenario-based approach, where each sce-
nario corresponds to a separate realization of uncertainty.
This paper draws from approaches used in semi-infinite
optimization to solve robust optimal control problems in
an efficient way.
To ensure that the optimization problems resulting from
scenario-based approaches to robust control are tractable,
the number of scenarios must be limited (Calafiore and
Campi, 2006). Usually, the choice of scenarios is done from
experience (Grammatico et al., 2015; Puschke et al., 2018)
and requires knowledge about both the controlled system
and the uncertainty to ensure that the chosen scenarios
guarantee robustness. A recent review of scenario-based
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methods was done by Campi et al. (2021) who indicated
that scenario selection is highly affected by the knowledge
about the uncertainty distribution. In practice, to tackle
problems with limited knowledge about the uncertainty,
it is often assumed that the worst-case scenarios lie
on the boundary of the uncertainty set (Mutapcic and
Boyd, 2009; Lucia et al., 2014; Vuffray et al., 2015).
As indicated by Thombre et al. (2021), the worst-case
scenario in nonlinear systems may lie in the interior of
the uncertainty range. In this paper, we present a method
for choosing potential worst-case scenarios that is derived
from semi-infinite optimization and is independent from
the uncertainty distribution.
An in-depth review of semi-infinite optimization methods
has been done by Hettich and Kortanek (1993); Hettich
et al. (2009); Hettich (1983) and recently by Seidel and
Küfer (2020); Djelassi et al. (2021). Semi-infinite opti-
mization methods have been used for optimal control
by Hauser (2018) to find optimal trajectories for robotic
arms. However, they considered only exogenous uncer-
tainty due to obstacles that did not affect the dynamics of



the controlled systems. Puschke et al. (2018) used semi-
infinite optimization methods to solve an optimal control
problem with only parametric uncertainty. Time-varying
uncertainty was considered by Thombre et al. (2021) who
used local reduction to find the interim worst-case scenar-
ios. However, they assumed that at every time step the
number of possible scenarios was finite.
The main contribution of the current work is a formu-
lation of robust nonlinear optimal control problems as
semi-infinite optimization problems. We then numerically
demonstrate that local reduction methods enable more
robust handling of significant parametric and time-varying
uncertainty than existing approaches.
The rest of the paper is structured as follows. Section 2
introduces robust optimal control problems. Section 3
presents the new method for solving robust optimal con-
trol problems. The numerical results are shown in Sec-
tion 4. The paper ends with conclusions in Section 5.

2. PROBLEM FORMULATION

2.1 Semi-infinite optimization problem

Q : min
θ∈A

Q(θ) (1a)

subject to R(θ, ρ) ≤ 0 for all ρ ∈ B (1b)
where A ⊂ Rnθ and B ⊂ Rnρ are nonempty and compact
sets, and Q and R are continuous functions of their
respective arguments (Blankenship and Falk, 1976). The
problem (1) has a finite number of variables θ but includes
an infinite number of constraints if B has an infinite
number of points. In particular, B may be uncountable.
One approach to remove the infinite number of constraints
consists in rewriting the constraint (1b) as:

S(θ) := max
ρ∈B

R(θ, ρ) ≤ 0. (2)

The challenge in solving the equivalent problem with con-
straint (2) is in non-differentiability of the function S(·).
The local reduction method proposed by Blankenship and
Falk (1976) allows overcoming the non-differentiability of
S(·) by sequentially solving (1) with finite subsets of con-
straints taken from B. In this paper, we show that optimal
control problems can be formulated as semi-infinite opti-
mization problems and solved using the method proposed
by Blankenship and Falk (1976).

2.2 Dynamic system with uncertainty

The system to be controlled is described by a nonlinear
difference equation with time-varying uncertainty wk ∈
W ⊂ Rnw and constant uncertainty d ∈ D ⊂ Rnd :

xk+1 = fk(xk, uk, wk, d) (3)
where fk is continuously differentiable. The state x0 at
time zero is w.l.o.g. assumed to be equal to a given x̂.
The control trajectory u := (u0, . . . , uN−1) is generated
by a causal dynamic feedback policy

uk := πk(x0, . . . , xk; q0, . . . , qk, r)
that is parameterised by q := (q0, q1, . . . , qN−1) ∈ Rnq

and r ∈ Rnr . The state trajectory x := (x0, . . . , xN ). The

time-varying uncertainty wk at time k and the constant
uncertainty d affect the dynamics in both an additive
and non-additive way, and take on values from compact
and uncountable (infinite cardinality) sets. Uncertainty in
the measured value of xk can be modelled by a suitably-
defined choice of fk, πk and wk.
A trajectory (x, u) satisfying the dynamics (3) and control
policy for a given parameterization (q, r) and realisa-
tion of uncertainty (w, d), where the trajectory w :=
(w0, . . . , wN−1) ∈WN := W× · · · ×W, is defined as:

z(q, r, w, d) :=
{

(x, u) | x0 = x̂

xk+1 = fk(xk, uk, wk, d)
uk = πk(x0, . . . , xk; q0, . . . , qk, r)

k = 0, 1, . . . , N − 1
}

.

(4)

2.3 Robust optimal control problem

Objective function and constraints The cost function for
the optimal control problem over a horizon of length N
is:

JN (x, u, w, d) := Jf (xN , wN , d) +
N−1∑
k=0

ℓk(xk, uk, wk, d).

(5)
Both the terminal cost function Jf (·, ·, ·) and stage cost
ℓk(·, ·, ·, ·) are continuously differentiable and depend on
the uncertainty w and d. The objective of the optimal con-
trol problem is to find a feedback policy π for system (3)
such that the worst-case cost in (5) is minimized and the
constraints

gk(xk, uk, wk, d) ≤ 0 (6)
are satisfied for all time instants k = 0, . . . , N − 1, all
states x, control u, uncertainty w and d. The vector
function of ng components, gk(·, ·, ·, ·), is continuously
differentiable and depends on uncertainty w and d. Note
that a constraint on xN can be included by incorporating
fN−1 in a suitable definition of gN−1.

Semi-infinite formulation Given a set of uncertainties
H ⊆WN × D, the problem in this work is stated as:

PN (H) : minq,r

xi,ui,i∈J

max
i∈J

JN (xi, ui, wi, di) (7a)

s.t. gk(xi
k, ui

k, wi
k, di) ≤ 0, ∀i ∈ J, k = 0, . . . , N − 1 (7b)

(xi, ui) = z(q, r, wi, di), ∀i ∈ J (7c)
where J := {1, . . . , cardH} and (xi, ui) is the state
and input trajectory associated with the ith disturbance
realisation (wi, di) such that H =

⋃
i∈J{(wi, di)}.

If z(·) in (7c) is linear jointly in all arguments, the
problem (7) can often be solved using scenario-based
methods for robust control from Calafiore and Campi
(2006); Scokaert and Mayne (1998), provided additional
convexity assumptions are satisfied by the uncertainty set
W. In this work, the dynamics from (3) are nonlinear and
W is only non-empty and compact.
Theorem 1. The robust optimal control problem (7) is
equivalent to the semi-infinite optimization problem (1)
with θ := (q, r, γ), where γ is an additional scalar
parameter characterizing the cost upper-bound, ρ :=
(w, d) and the sets A := Rnq ×Rnr ×R, B := H.



Proof 1. In contrast to (1a), the objective function in (7a)
contains uncertainty. Introducing γ ∈ R, we rewrite (7) as:

PN (H) : min
γ,q,r

xi,ui,i∈J

γ (8a)

s.t. gk(xi
k, ui

k, wi
k, di) ≤ 0, ∀i ∈ J, k = 0, . . . , N − 1 (8b)

(xi, ui) = z(q, r, wi, di), ∀i ∈ J (8c)
JN (xi, ui, wi, di) ≤ γ, ∀i ∈ J (8d)

The problem (8) has uncertainty exclusively in the con-
straints. If cardH is finite, then the problem (8) is con-
venient to solve numerically using tailored efficient finite-
dimensional optimization methods that exploit the spar-
sity in the relevant Jacobians and Hessians. However,
infinite cardinality of H yields an infinite number of both
constraints and variables, which means that the problem
(8) needs to be further reformulated to become (1). Notic-
ing that the constraint (8b) is equivalent to

max
k

gk(xi
k, ui

k, wi
k, di) ≤ 0, ∀i ∈ J, (9)

we introduce
G(xi, ui, wi, di, γ) := max{max

h,k
eT

h gk(xi
k, ui

k, wi
k, di),

JN (xi, ui, wi, di)− γ} (10)
In (10), eh is the hth column of an identity matrix Ing .
Using (4) and (10), we can write (8) as:
PN (H) : min

q,r,γ
γ (11a)

s.t. G(z(q, r, w, d), w, d, γ) ≤ 0, ∀(w, d) ∈ H, (11b)
The problem (11) is equivalent to

PN (H) : min
q,r,γ

γ (12a)

s.t. max
(w,d)∈H

G(z(q, r, w, d), w, d, γ) ≤ 0. (12b)

Taking θ := (q, r, γ) and ρ := (w, d) in (11) (similarly in
(12)) we obtain the form of (1) (similarly (2)). 2

We also notice that (12b) is equivalent to:
Gmax(q, r, γ,H) := max

(w,d)∈H
(x,u)=z(q,r,w,d)

G(x, u, w, d, γ) (13)

Theorem 1 allows solving problem (7) as a semi-infinite
optimization problem of the form (1) using the local
reduction from Blankenship and Falk (1976).

3. LOCAL REDUCTION FOR OPTIMAL CONTROL

The local reduction method from Blankenship and Falk
(1976) consists in iteratively solving finite-dimensional
optimization problems. We use the local reduction meth-
ods for the problem (11) by iteratively solving optimal
control problems parametrised by scenarios. A scenario is
a realisation of the uncertainty (w∗, d∗) ∈WN × D.

3.1 Minimization step

Algorithm 1 is the local reduction algorithm for robust
optimal control. The algorithm in iteration j solves an
optimal control problem of the form (8) or (11) assuming
that the number of scenarios cardHj at step j is finite.
The algorithm needs an initial guess for the parameters

Algorithm 1: Exact local reduction method
Input: Initial guess for q, r, γ and H1 ̸= ∅
Output: Optimal q∗, r∗, γ∗, set of scenarios H∗

1 Set q1 ← q, r1 ← r, γ1 ← γ, j ← 1
2 repeat
3 Compute Gmax(qj , rj , γj ,WN × D) and a

maximizer (xj , uj , wj , dj) by solving (13) with
H = WN × D.

4 if Gmax(qj , rj , γj ,WN × D) ≤ 0 then
5

Hj+1 ← Hj

6 else
7 Add new scenario

Hj+1 ← Hj ∪ {(wj , dj)}
8 Find a (qj+1, rj+1, γj+1) that solves

PN (Hj+1) using (8) or (11).
9 end

10 Set j ← j + 1
11 Set (q∗, r∗, γ∗)← (qj , rj , γj) and H∗ ← Hj .
12 until cardHj = cardHj−1;

of the controller. For instance, the initial guess can be
obtained by solving (11) for one scenario, cardH1 = 1.
In the first step of Algorithm 1 (line 3), the algorithm
checks whether worst-case scenarios exist that would lead
to a violation of constraints (10). If no constraints are
violated (line 4), the current parameters give a robust
solution to the current set of scenarios Hj . If there
exists at least one violated constraint, then a scenario
corresponding to the maximum constraint violation is
added to the scenario set Hj+1 in the next iteration (line
7). The new set Hj+1 is then used to find a new set of
control parameters (line 9). The algorithm ends if no new
scenarios are added, i.e. cardHj = cardHj−1.
In this work, any scenario corresponding to the maximum
constraint violation can be added to the set of scenarios.
However, it has been shown that computational perfor-
mance may be improved if multiple scenarios are added
(Tsoukalas et al., 2008).
The convergence of local reduction method in the case
of the form (1) was first shown by Blankenship and Falk
(1976), generalised by Reemtsen and Rückmann (1998),
and recently by Mitsos (2011). They required that the
sets A and B in (1) are non-empty and compact, and that
the functions Q and R are continuous with respect to all
their arguments. Then they showed that the sequence of
solutions obtained for a sequence of finite and countable
subsets of B converges to the solution of (1), provided
that the minimization and the maximization steps are
solved to global optimality. We show in Theorem 2 when
the Algorithm 1 solves the problem (7). A discussion on
convergence rate of local reduction methods was done by
Seidel and Küfer (2020).
Theorem 2. The solution (q∗, r∗, γ∗) obtained from Al-
gorithm 1 for a non-empty and compact set WN × D
converges to the solution of (7) if the set F such that
(q, r, γ) ∈ F ⊂ Rnq ×Rnr ×R is non-empty and compact.
Proof 2. From Theorem 1, we have θ := (q, r, γ) and ρ :=
(w, d), A := F, B := H. In (11), we take Q(θ) := γ which



Algorithm 2: Maximization - line 3 in Algorithm 1

Input: Current values of qj , rj , γj

Output: Worst case scenario (wj , dj) in iteration
j

1 Find any x∗, u∗, w∗, d∗ that solves:
max

x,u,w,d
JN (x, u, w, d)− γj

s.t. (x, u) = z(qj , rj , w, d)
(w, d) ∈WN × D

2 Set K← (w∗, d∗, JN (x∗, u∗, w∗, d∗)− γj)
3 for h = 1, . . . , ng do
4 for k = 1, . . . , N − 1 do
5 Find any x∗, u∗, w∗, d∗ that solves:

max
x,u,w,d

ehgk(xk, uk, wk, d)

s.t. (x, u) = z(qj , rj , w, d)
(w, d) ∈WN × D

Set K← K ∪ (w∗, d∗, ehgk(x∗
k, u∗

k, w∗
k, d∗))

6 end
7 end
8 Set v∗ ← max{v3 | (v1, v2, v3) ∈ K};
9 Choose any (wj , dj) ∈ {(v1, v2) | (v1, v2, v∗) ∈ K}

is linear and thus continuous. Then we have R(θ, ρ) :=
G(z(q, d, w, d), w, d) which is continuous because both
maxh,k eT

h gk(·, ·, ·, ·) and JN (·, ·, ·, ·) are continuous. The
proof follows from Lemma 2.2 by Mitsos (2011). 2

3.2 Maximization step

The maximization step consists in solving (13) with H =
WN×D. Solving (13) is equivalent to solving ng ·(N−1)+1
optimization problems, where ng denotes the number of
elements in the vector function g(·) from constraints in
(6). The algorithm is presented in Algorithm 2. Without
loss of generality, we assume that the first constraint
to include in the maximization problem corresponds to
the reformulated objective function (5). A scenario that
corresponds to maximal value of this constraint is added
to an auxiliary set K. The remaining ng·(N−1) constraints
are included as objectives in the respective maximization
problems (line four to eight in Algorithm 2). Note that
the problem corresponding to the objective (line 2) and all
the problems corresponding to the constraints (line four
to eight) can be solved in parallel.
All maximization problems are subject to the same equal-
ity constraints capturing the dynamics. This formulation
allows us to treat the maximization problems as optimal
control problems and preserve the sparsity of the rele-
vant Jacobians and Hessians. We solve the maximization
problems as optimal control problems where q, r, and γ
are known parameters whereas w and d are treated as
unknown inputs. Thus, the maximization problems can
be solved using off-the-shelf optimal control solvers.
Solving (13) with H = WN×D corresponds to lines four to
eight in Algorithm 2 and can be done by solving a number
of finite-dimensional optimization problems in parallel as
indicated by Žaković et al. (2003).

4. NUMERICAL RESULTS

We show that the local reduction method described in
Section 3 finds scenarios from inside the uncertainty
sets and provides robust solutions to optimal control
problems with uncertainty in a case study of temperature
control in a residential building, adapted from Lian and
Jones (2021). The example was implemented in Julia
1.6 (Bezanson et al., 2017) using JuMP 0.21.4 (Dunning
et al., 2017). The problems were then solved with Ipopt
version 3.12.10 (Thierry and Biegler, 2020). All tests were
performed on a laptop with an Intel® Core™ i7-7500U
with 16 GB of RAM.

4.1 Example

The example shows a single zone building affected by
time-varying internal heat gain, solar radiation, and ex-
ternal temperature. The objective is to keep the internal
temperature xtemp

k within time-varying bounds:
Tmin ≤ xtemp

k ≤ Tmax. (16)
During the day, the indoor temperature must be kept
above 23 ◦C and during the night it can drop down to
17 ◦C. The maximal temperature is the same during the
day and night, Tmax = 26 ◦C. The dynamics are discrete
and linear:

xk+1 = A(d)xk + B(d)usat
k + Wwk. (17)

The states x describe the indoor temperature xtemp, wall
temperature xwall, and the corridor temperature xcorr.
The initial condition was chosen as

x0 = [25 ◦C 24 ◦C 24 ◦C]
T
.

The control u represents the amount of heating and
cooling delivered to the building. The nominal matrices
are taken from Lian and Jones (2021).
There are 14 uncertain parameters affecting the matrices
A, B, and the initial condition for the wall and corridor
temperatures, d ∈ R14, d = [λwall, λcorr, δi,j , ηj ]i,j=1,...,3.
We assume that the wall temperature and the corridor
temperature can only be measured approximately. We
have xi

0 = 24 + λi, i = wall, corr, where λi ∈ [−0.5, 0.5].
We also assume that the matrices A = [ai,j ] and B = [bj ],
i, j = 1, 2, 3 are affected by uncertainty ai,j · δi,j and
bj · ηj where δi,j , ηj are uncertain parameters, δi,j , ηj ∈
[0.96, 1.03].
The minimal control effort is ensured by the objective
function

J = 1
N

N∑
k=1

u2
k.

It is assumed that the day starts at 6.00 am and lasts
12 hours. The optimal control problem is solved over a
period of 48 hours starting at 6.00 am the first day, with
N = 192. The three uncertain parameters, internal gain,
solar radiation, and external temperature, vary with time
within the limits provided by Lian and Jones (2021).
The control variables are parameterised as:

uk = Kxtemp
k + qk (18)

where r := vec(K) and qk are decision variables. We
include saturation of the control inputs:



usat
k =


−500 W for uk < −500 W
uk for − 500 W ≤ uk ≤ 1200 W
1200 W for uk > 1200 W

(19)

The saturation was approximated by a smooth function:

usat
k = β0

β1 + exp(β2uk) + β3 (20)

where βi are constants. Here β0 = −5030, β1 = 2.937,
β2 = 0.003, β3 = 1207.
The results obtained from local reduction are then com-
pared with three scenario-based approaches from the lit-
erature (Thombre et al., 2021): nominal, with a controller
obtained assuming there is no uncertainty (“Nominal”),
randomised, with a controller obtained for a number of
scenarios chosen from a uniform distribution (“Random”),
extreme, with a controller obtained for three cases: nom-
inal, lower bound, and upper bound for all uncertainties
(“Nominal+two extreme”).

4.2 Overall performance

The local reduction method reduced the number of sce-
narios to 101. The resulting controller obtained for the
interim worst-case scenarios was then validated for 500
random realisations from a uniform distribution of uncer-
tainty. The validation of the controller is shown in top plot
in Fig. 1. The black curves stay within the green bounds
corresponding to constraints (16). The results suggest that
local reduction was able to find a robust solution despite
using a local solver for maximizations.
The results also indicate that the local reduction method
handles time-varying uncertainty without specifying the
scenarios over a shorter time horizon. Algorithm 2 treats a
scenario of time-varying uncertainty as a single realization
of the uncertainty over the whole horizon, removing the
necessity of defining all possible uncertainty realizations
on short horizons.

4.3 Comparison with other approaches

Validating the nominal controller with 500 random sce-
narios shows that the approach based on nominal values
leads to violation of constraints (plot ‘Nominal’ in Fig. 1).
The second set of controllers we used was derived using
three random cases: five scenarios, 100 scenarios, and 250
scenarios. The results are shown in the plot ‘Random’ in
Fig. 1, with black corresponding to the controller obtained
from five scenarios, yellow to the controller with 100
scenarios, and blue to the controller with 250 scenarios.
As shown in Fig. 2, in all the cases the controller violated
at least one of the bounds (100 scenarios by 0.2 ◦C, 250
scenarios by 0.1 ◦C), with the controller based on five
scenarios violating both the lower and upper bound (by
1.1 ◦C). Even though the violation decreased with increas-
ing the number of scenarios, further increasing the number
of random scenarios to 600 proved unsuccessful in avoiding
the violation. Larger problems could not be solved with
the given computer in a reasonable amount of time.
If we were to take only extreme values for every uncer-
tainty and consider all the scenarios, we would need to
solve a problem with 214+3×192 scenarios, which is too
many. To reduce the number of scenarios, we chose to use

Fig. 1. Comparison with other scenario-based approaches

Fig. 2. Zoomed in part showing how random scenarios
violate constraints

the nominal scenario, combined with two extreme scenar-
ios. The extreme scenarios were taken as all uncertainties
on their lower or upper bound simultaneously. The results
of validating the controller for 500 scenarios are shown in
the plot ‘Nominal+two extreme’ in Fig. 1. The controller
based on extreme scenarios was also unable to satisfy
the constraints. The black lines after 24 hours cross the
green lines so that the lower bound on the temperature is
violated (by 0.5◦ C).



5. CONCLUSIONS

Solving robust nonlinear optimal control problems is chal-
lenging, especially if the knowledge about the uncertainty
is limited. Scenario-based approaches provide a way of
reformulating the optimal control problems as nonlinear
optimization problems. However, the choice of scenarios
and their number is non-trivial, because the scenarios
must ensure robustness while keeping the size of the
optimization problem manageable. In particular, the size
of the resulting optimization problems increases compu-
tationally if time-varying uncertainties are involved. In
this paper, we showed that a class of robust optimal con-
trol problems is equivalent to semi-infinite optimization
problems. We then demonstrated how a local reduction
method derived from semi-infinite optimization provides
flexibility in choosing scenarios for nonlinear robust con-
trol problems. By adding interim worst-case scenarios,
the local reduction method enables finding a trade-off
between the size of the resulting optimization problem and
robustness of the solution to the original optimal control
problem.
This paper extended the original local reduction method
to optimal control problems with time-varying uncer-
tainty. The performance of our approach was evaluated
in a case study with both additive and parametric un-
certainty. A comparison with common approaches based
on random choice of scenarios and on boundary scenarios
indicates that local reduction has potential for solving
robust optimal control problems in an efficient way while
ensuring robustness.
Future work will include theoretical analysis of the local
reduction method as well as numerical improvements
needed if local solvers are used. Furthermore, applications
in predictive control settings, including analysis of time to
find a solution, can also be considered.
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