
Predictive control co-design for enhancing
flexibility in residential housing with

battery degradation ?

P. Falugi ∗ E. O’Dwyer ∗∗ E. C. Kerrigan ∗∗∗ E. Atam ∗

M. A. Zagorowska ∗ G. Strbac ∗ N. Shah ∗∗

∗ Department of Electrical and Electronic Engineering, Imperial
College London, London, UK (e-mails: p.falugi@imperial.ac.uk,

e.atam@imperial.ac.uk, m.zagorowska@imperial.ac.uk,
g.strbac@imperial.ac.uk).

∗∗ Department of Chemical Engineering, Imperial College London,
London, UK (e-mails: e.odwyer@imperial.ac.uk,

n.shah@imperial.ac.uk)
∗∗∗ Department of Electrical and Electronic Engineering, Department

of Aeronautics, Imperial College London, London, UK, (e-mail:
e.kerrigan@imperial.ac.uk)

Abstract: Buildings are responsible for about a quarter of global energy-related CO2 emissions.
Consequently, the decarbonisation of the housing stock is essential in achieving net-zero carbon
emissions. Global decarbonisation targets can be achieved through increased efficiency in using
energy generated by intermittent resources. The paper presents a co-design framework for
simultaneous optimal design and operation of residential buildings using Model Predictive
Control (MPC). The framework is capable of explicitly taking into account operational
constraints and pushing the system to its efficiency and performance limits in an integrated
fashion. The optimality criterion minimises system cost considering time-varying electricity
prices and battery degradation. A case study illustrates the potential of co-design in enhancing
flexibility and self-sufficiency of a system operating under different conditions. Specifically,
numerical results from a low-fidelity model show substantial carbon emission reduction and
bill savings compared to an a-priori sizing approach.
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systems, Interaction between design and control

1. INTRODUCTION

Achieving net-zero carbon emissions by 2050 will entail
significant changes to the way electrical energy is gener-
ated, transmitted and used. Leveraging operational flex-
ibility will be a critical challenge for developing a cost-
efficient net-zero carbon system. Currently, technologies
that support the functionality of residential buildings, such
as thermal solar, PV panels and heating systems, are sized
without considering how they perform in conjunction with
the Building Management System (BMS) that will operate
them. In this work, we present an approach to sizing the
optimal technology mixes, while incorporating the effect
on the operation of the optimised system. The results are
presented in a case study for residential buildings equipped
with battery storage systems, subject to degradation.

Simultaneous optimisation of design and operation of a
system is called co-design. Diangelakis et al. (2017) pro-
vides an overview of control approaches used in co-design
for process systems engineering applications. The need for
increased flexibility has sparked interest in optimal system
? This work was supported by the EPSRC under the grant
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operation and configuration at the residential building
level. Optimal design approaches for battery sizing with
photo-voltaic panels (PV) and energy management of
smart homes have been proposed by (Wu et al., 2017) and
(Beck et al., 2016). (Koskela et al., 2019) further empha-
sized the impact of the size of PVs and battery on the
profitability from the economic perspective. In particular,
(Koskela et al., 2019) analysed the interactions between
the size of the PVs and battery storage, but without
considering the impact of battery degradation on the op-
eration of the system. (Sorourifar et al., 2020) have shown
that battery degradation leads to decreased performance
of energy management systems and proposed a strategy
for replacing degraded batteries. However, their solution
focused on economic aspects of energy management with
battery storage systems. The present contribution includes
a detailed case study on optimal sizing of battery storage
and the roof area used by photo-voltaic panels (PV), while
considering optimal management of the building assets in
the form of a single finite-horizon optimal control problem.

The paper is structured as follows. Section 2 introduces
the model of the considered residential building. Section 3
presents the co-design framework for residential buildings,



Table 1. Dwelling parameters

Description Parameter Value Unit

Average U-value U 0.93195 W/(m2 K)
Wall surface area A 82.06959707 m2

Air density ρair 1.225 kg/m3

Building volume V 224.05 m3

Air heat capacity Cp
air 1.005 kJ/(kg K)

Air changes per hour nac 1 h−1

Building thermal mass Cbuild 15286.6114 kJ/K
Floor surface area SF 89.62 m2

HP electricity bound ueH 4 kW

CP electricity bound uceH 6 kW

HP capacity Q
HP

6 kW

while Section 4 defines the case study and illustrates
and discusses the mutual influences between design and
predictive control. Finally, the conclusions are presented
in Section 5.

2. BUILDING MODEL

An essential feature of future residential buildings is the
integration of storage assets with on site generation ca-
pacity to enhance self-sufficiency, resilience and flexibility
of the building. The thermal mass of the dwelling can be
effectively modelled by adopting the widely used single-
zone lumped-capacitance method as proposed in (Hazyuk
et al., 2012). The parameters of the building thermal model
are reported in Table 1. They represent the physical prop-
erties of a well insulated building. The building internal
temperature Tt is described by the first-order ordinary
differential equation

Cbuild
dTt
dt

= M(T e
t − Tt) +QHP

t −QCP
t , (1)

where M := UA+ρairV C
p
airnac, T

e
t is the outdoor temper-

ature and the heat regulation is provided by heat pumps
(HP). In particular, QHP

t and QCP
t are, respectively,

the heat and cooling provided by electrically driven heat
pumps. Comfort requirements, according to standards in
(CIBSE, 2015), are imposed through constraints on the
internal temperature of the building as

T t ≤ Tt ≤ T t, (2)

where T t and T t are the desired thermal comfort limits.

The heat pump extracts heat from ambient air and its key
modelling aspect is its Coefficient of Performance (COP),
which is the ratio between supplied heat QHP

t and the
consumed electric power ueHt

QHP
t = COP(T e

t )ueHt . (3)

Since the output of a heat pump decreases with external
temperature, in the present study we have modelled the
COP as a linear function of the external temperature:

COP(T e
t ) = mCOP(T e

t − 7) + 3. (4)

The cooling pump coefficient COPcool has been assumed
constant. The values of parameters are listed in Table 2.
The symbols T and Ir denote the temperature and the
irradiance, respectively.

The building is equipped with a rechargeable lithium
battery to enhance system flexibility and adaptability. A
model of the battery state of charge SoCt is

˙SoCt = ηchucht −
udcht

ηds
, (5)

Table 2. Asset parameters

Description Parameter Value Unit

HP COP slope mCOP 0.067 ◦ C
CP COP COPcool 0.7 -

Battery charging ηch 0.88 -
Battery discharging ηds 0.88 -

Max battery size SoC 60 kWh
Power/(Ir) gain θ1 0.12 kW/m2

Power/(Ir) correction θ2 −1.345e−4 -
Power/(T Ir) correction θ2 −3.25e−3 -

where udcht and ucht denote the discharging and charging
rates, respectively. The parameters ηch and ηds model the
charging and discharging efficiencies. The capacity and
charge/discharge limits are

0 ≤ SoCt ≤ SB

0 ≤ udcht , ucht ≤ SB/Tds
(6)

where Tds represents the number of hours required to fully
discharge a battery at the maximum discharge rate.

The degradation of a battery strongly depends on how
it is operated. Degradation consists in the incremental
charging capacity loss of the battery during its lifetime
operation. (Fortenbacher and Andersson, 2017) modelled
battery degradation as a function of the battery inputs,
its state of charge and the capacity.

The degradation process can be described with piecewise
affine maps

dt = max
k=1,...,ns

{
a1,k(udcht + ucht ) + a2,kSoCt + a3,kS

B
}
(7)

with constant coefficients a1,k, a2,k, a3,k ∈ R for all
k = 1, . . . , ns. The degradation map is included in an op-
timization framework by introducing an additional input
udt required to satisfy the constraint udt ≥ dt. The capacity
loss affects the battery value, and its degradation is related
to the overall battery cost. The vector parameters a1, a2,
a3 for the battery in this study are from (Fortenbacher
and Andersson, 2017).

The present case study includes the option of installing
PV panels. The maximum power produced by PV panels
can be modelled as a nonlinear function (Dows and Gough,
1995; Pepe et al., 2018) of the solar irradiance It and the
external temperature

PPV
t = θ1(1 + θ2It + θ2T

e
t )ItS

PV , (8)

where SPV denotes the roof area covered by the PV panel
and θi, i = 1, . . . , 3 are constant parameters. The operating
limits refer to the design specs for the multi-crystalline
JAP6 4BB module range manufactured by JA (JA SOLAR
Technology Co.,Ltd., 2020). The parameter values for a
location in the south of the UK are reported in Table 2.

3. OPTIMAL CO-DESIGN FRAMEWORK FOR
RESIDENTIAL BUILDINGS

The sizing problem requires consideration of how the sys-
tem is operated for at least a year. The proposed co-design
problem minimises an economic cost comprising a time
varying electricity bill, carbon emissions and annualised
capital cost of the battery and PV panels. The problem
is required to satisfy operational and physical constraints
and is defined as



min
u, x,

SB , SPV

∫ tf

t0

`(xt, ut, t)dt+ CPV SPV + CBSB (9)

subject to (1), (2), (3), (4), (5), (6), (8) (10)

uBt − uSt + udcht − ucht + PPV
t = ueHt + uCeH

t (11)

0 ≤ uBt ≤ 30, 0 ≤ uSt ≤ 30 (12)

0 ≤ ueHt ≤ ueH , 0 ≤ uCeH
t ≤ uCeH (13)

0 ≤ SPV ≤ SF , (14)

0 ≤ SB ≤ SoC (15)

1udt ≥ a1(udcht + ucht ) + a2SoCt + a3S
B (16)

for all t ∈ [t0, tf ], where x : R → R3 and u : R → R7

denote the state and control input trajectories of the
system, `(xt, ut, t) := cptu

B
t + cdudt − cSt u

S
t , a1, a2, a3,

1 ∈ Rns , uBt and uSt are the bought and sold power,
respectively, with a bound of 30kW determined by the
connection contract. The inequality (16) consists of 18
constraints with coefficients provided by (Fortenbacher
and Andersson, 2017). The optimal ud∗t corresponds to the
capacity loss dt from equation (7) induced by the optimal
management of the battery. The physical limitation that
the total area occupied by the PV panels must not exceed
the available roof area is expressed by (14). The capacity
SB of the battery is limited by the constraint (15).

Boundary cyclic conditions (BC) are included as

x(t0) = x(tf ) (17)

to enforce the periodic steady-state optimal solution to
problem (9). A periodic steady-state trajectory can be
thought of as a repeatable optimal operating condition
in the subsequent years and defines an MPC formulation
on an infinite horizon for the deterministic case. Thus,
the final time tf was set to one year to capture the
periodic behaviour of a building. The sensitivity of the
solution with respect to the boundary conditions (17)
will be investigated to analyse its effective impact in a
problem presenting extremely fast dynamics with respect
to the periodicity under consideration. Note that, since we
consider a deterministic formulation of the sizing problem
through the whole prediction horizon with periodic steady-
state conditions, for the certainty equivalence principle, it
is not necessary to use a feedback formulation.

The prices cpt := cBt + cmt include the electricity prices
cBt and the price cmt of carbon emissions. The studies
have been performed considering time-varying electricity
prices cBt with 15 minutes resolution based on Nordpool
data with a pricing mechanism used as described by
Octopus Tracker (Octopus Energy Ltd., 2020). It has been
assumed that at each time instant the price of the sold
power cSt satisfies cSt = 0.9cBt . Meteorological data profiles
for different UK locations have been obtained from a
database maintained by the European Commission Joint
Research Centre (JRC, 2012). To analyse the benefits
of system design with consideration of the operational
strategy and objective choice, we have solved the problem
under different conditions and investment costs (see Table
3). Furthermore, an additional case has been created
in which technologies are sized without consideration of
how the building is operated. In particular, following the
current practice, PV panels have been chosen to cover

Fig. 1. The costs for carbon emissions and electricity prices
throughout the whole year considering a carbon price
cost of 100£/(ton CO2e)

Table 3. Asset Investment Parameters

CPV CB cd

CAPEX1 80£/m2 10£/kWh 10£/kWh
CAPEX2 80£/m2 0£/kWh 500£/kWh
CAPEX3 300£/m2 500£/kWh 500£/kWh
Technology

lifespan (years)
30 15 -

an area of SPV = 44.81m2 jointly with a battery of
30kWh capacity. The capital costs, referred to as CAPEX,
used in the reported results are provided in Table 3 and
the degradation cost is given by the battery cost. The
annualised capital costs have been computed considering
the technology lifespan in Table 3 and an interest rate
r = 2%. In particular, the equivalent annual cost of each
technology is obtained dividing the capital cost (CAPEX)
by the “present value of annuity factor”

ay,r =
1− 1

(1+r)y

r
with y denoting the year.

4. CASE STUDY

The co-design problem (9) has been solved using the in-
vestment costs in Table 3 and analysed under different
operating assumptions. In particular, the impact of the
degradation model and the inclusion of boundary con-
ditions have been investigated. The analysis illustrates
the benefits of adopting a co-design framework in en-
hancing the performance of a system operating under
varying external conditions through the whole year. The
co-design problem (9) has been implemented in Matlab
using ICLOCS2 (Nie et al., 2018) and solved with IPOPT
(Wächter and Biegler, 2006). The studies have been per-
formed on a laptop equipped with an Intel(R) Core(TM)
i7-9850H CPU @ 2.60GHz processor. The adopted tran-
scription method is the explicit Euler with 15 minutes time
resolution. The Euler method enables analysis of systems
with discontinuities in the inputs. The maximum time
resolution is dictated by the piece-wise constant electric-
ity prices which update every 15 minutes. The technol-



Table 4. Sensitivity of the solution versus the
boundary conditions

Case Problem (9) Problem (9)
CAPEX1 with BC No BC

Battery Capacity (kWh) 7.88 11.87
Area PV (m2) 89.62 89.62

Operational Cost (£/y) −802.83 −807.78
Investment Cost (£/y) 326.25 329.36

Total Optimal Cost (£/y) −476.58 −478.42
Net Carbon emissions (Kg/y) −1610.9 −1622.2

Table 5. Solutions with extreme CAPEX

Problem (9) Problem (9)
Case CAPEX2 CAPEX3

+ BC + BC

Battery Capacity (kWh) 60 0
Area PV (m2) 89.62 89.62

Operational Cost (£/y) −825.25 −793.03
Investment Cost (£/y) 320.12 1200.5

Total Optimal Cost (£/y) −505.61 407.43
Net Carbon emissions (kg/y) −1693.8 −1606.5

ogy sizes and the costs obtained solving the optimization
problem (9)-(16) with and without Boundary Conditions
(BC) adopting CAPEX1 are reported in Table 4. Since
the incremental variations in the electricity prices are rel-
atively small, the solution demonstrates sensitivity to the
inclusion of the boundary conditions even if the horizon
covers the whole year.

Table 5 compares the optimal solutions employing CAPEX2

and CAPEX3. CAPEX3 uses realistic capital costs. The
capital cost of the battery is too high to be economically
advantageous. The optimal decision consists of installing
the maximum possible PV generation capacity to im-
mediately sell or use the generated energy and mitigate
the bill expenses. Conversely, using CAPEX2, since, in
the objective, the variable electricity prices dominate the
contribution of the expenses, the co-design framework
recommends installing technologies of maximum possible
size. In this case, flexibility is precious since the variable
electricity prices describe the grid’s flexibility requirements
aside from determining the electricity bill of the build-
ing owner. Indeed the problem under consideration is a
multi-objective problem, and the optimal solution depends
on the relative importance of its terms. In other words,
small capital costs can be interpreted as giving priority to
flexibility. Note that, in the studies reported in Table 5,
the magnitude of the operational cost and the net carbon
emissions are similar. The Net Carbon Emissions represent
the emission variation contributed by the active building
across one year. The emission index accounts for a positive
contribution due to purchased electricity and a negative
one accrued by selling electricity.

Note that the solution obtained for CAPEX3 excludes
the storage technologies, but its performances in terms of
operational cost and net carbon emissions are comparable
to those obtained using CAPEX1 and CAPEX2 under the
same operating conditions. However, the performance of
the design that excludes storage assets may deteriorate
considerably under different operating conditions. This sit-
uation happens because, in the cost, the value of flexibility
is not precisely quantified. Also, the occurrence of different
future scenarios is ignored.

Table 6. Performances under different assump-
tions

Pre-sized Problem (9)
Case + BC no sell

CAPEX1 + BC

Battery Capacity (kWh) 30 8.86
Area PV (m2) 44.81 36.10

Operational Cost (£/y) −182.31 240.06
Investment Cost (£/y) − 135.86

Total Optimal Cost (£/y) − 375.92
Net Carbon emissions (Kg/y) −444.47 394.14

Fig. 2. Temperatures

The first column in Table 6 reports the annual opera-
tional cost achieved by a predictive controller with pre-
determined technologies. The model predictive controller
is based on the problem (9)-(16) assigning the technologies’
size determined a-priori. The bill savings and the net
carbon emission reductions are substantially inferior com-
pared to all the case studies using the co-design framework
with the option of providing energy to the grid.

The optimal performances and the technology mix of a
residential building without the option of selling power
to the grid are documented in the second column of
Table 6. This latter case shows lower PV capacity and a
slightly increased battery capacity than the corresponding
problem with the possibility of selling energy to the grid
in Table 4. The result is due to the fact that the local
generated energy is substantially higher in summer than
in winter and any excess energy is wasted.

The achieved performances of the building at the opera-
tional level are illustrated for the case study CAPEX1 with
the inclusion of boundary conditions. The optimisation
problem has been solved in about 2h 20 m. Figure 2 shows
how the predictive controller satisfies the thermal comfort
requirements over the year while the left thermal margins
provide energy storage capability reducing the size of the
needed battery. Figures 3 and 4 illustrate the management
of the battery in a summer week in the CAPEX1 and pre-
sized cases, respectively. In the pre-sized case, the battery
is underutilised, and it is oversized for the considered op-
erating conditions. Conversely, the battery obtained with
the co-design process are fully and efficiently used through
the whole year.



Fig. 3. Battery behaviour in a summer week (CAPEX1

with BC)

Fig. 4. Battery behaviour in a summer week (pre-sizing
with BC)

The electricity consumption of the heat and cooling pumps
obtained with the co-design approach are shown in Figure
5. Conversely, the power profiles in Figures 6 and 7 are
substantially different. The oversized battery in the pre-
sized case trades larger quantities of energy with the grid
causing higher peaks of bought and sold power.

The importance of including a battery degradation model
is demonstrated in Figure 8, which reports the energy and
power charge/discharge profiles of the battery with and
without the degradation model. The results highlight how
the battery is subject to a more intensive use in the case
where the degradation is not considered.

Note that, since the degradation process consists of a
loss capacity effect, the sensitivity of the optimal solution
with respect to the degradation process increases with its

Fig. 5. Electricity consumption for thermal comfort
(CAPEX1 with BC)

Fig. 6. Bought and sold power (CAPEX1 with BC)

capital cost. Once the battery capacity fades, there is a
cost due to its replacement.

5. CONCLUSIONS

The achievement of net-zero carbon emissions requires
decarbonisation of the entire housing stock. We have pre-
sented an approach to simultaneously optimize the de-
sign and the operation of residential buildings consider-
ing external weather conditions and time-varying electric-
ity prices. A case study demonstrates the ability of the
presented co-design framework to seek trade-offs in an
integrated fashion with a temporal resolution spanning
from years to minutes. The results show a sensitivity of
the optimal solution to cyclic constraints accounting for
the possible yearly seasonal periodicity. The phenomenon
appears for the relatively low available incremental prices
and is due to a lack of a systematic way of pricing the
initial and final state of the system. This high sensitivity
also demonstrates that the range of price variations is such



Fig. 7. Bought and sold power (pre-sizing with BC)

Fig. 8. Battery optimal management with and without
degradation model for CAPEX3

that the value of the initial energy stored is comparable
to the saving achieved. It also suggests that the combina-
tion of the considered technologies is only convenient in
highly dynamic electricity markets unless other sources of
revenue, such as ancillary services, are accounted for as
possible additional income.

In particular, the case study based on a low-fidelity model
reported for the co-design framework quadrupled emission
reductions. Simultaneous design and control leads to a
total annual bill saving of up to £475 compared to the
a-priori sizing approach.

Overall, the flexibility of MPC and optimal design of
residential buildings indicate that the presented framework
is a good candidate for future work, such as data-driven
control and robust optimization. The case study could
be further explored, taking into account an improved
accuracy of the model and the effect of the uncertainty
to improve the understanding of the interplay between
design and operation of a system. Analysis of the value of
flexibility against potential cost savings, carbon emission
reductions, and the robustness against uncertainties might
enable better handling of uncertainty inherent in real-
life applications. Future work could also involve analysis
of the accuracy of the chosen discretisation scheme and

sensitivity studies of the optimal solution to the volatility
of the electricity prices.
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