3,649 research outputs found

    GENHYP - A FORTRAN 5 program for general linear hypothesis testing

    Get PDF
    GENHYP FORTRAN 5 program for general linear hypothesis testin

    The negatively charged nitrogen-vacancy centre in diamond: the electronic solution

    Get PDF
    The negatively charged nitrogen-vacancy centre is a unique defect in diamond that possesses properties highly suited to many applications, including quantum information processing, quantum metrology, and biolabelling. Although the unique properties of the centre have been extensively documented and utilised, a detailed understanding of the physics of the centre has not yet been achieved. Indeed there persists a number of points of contention regarding the electronic structure of the centre, such as the ordering of the dark intermediate singlet states. Without a sound model of the centre's electronic structure, the understanding of the system's unique dynamical properties can not effectively progress. In this work, the molecular model of the defect centre is fully developed to provide a self consistent model of the complete electronic structure of the centre. The application of the model to describe the effects of electric, magnetic and strain interactions, as well as the variation of the centre's fine structure with temperature, provides an invaluable tool to those studying the centre and a means to design future empirical and ab initio studies of this important defect.Comment: 24 pages, 6 figures, 10 table

    Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells

    Get PDF
    Li/Ca ratios in modern brachiopod shells generally correlate inversely with growth temperature, ranging from ∼20 µmol/mol at 30°C to ∼50 µmol/mol at 0°C with no apparent interspecific offsets. Causes of the temperature effect on Li/Ca ratios are not yet understood. Cenozoic brachiopod Li/Ca ratios average ∼30 µmol/mol, similar to the average observed in modern brachiopods. Relatively constant Li/Ca ratios for Eocene to Pleistocene nonluminescent brachiopod shells, consistent with previous observations of Cenozoic planktonic foraminifera, support the conclusion of little variation in Cenozoic seawater Li/Ca. Nonluminescent portions of Permian and Carboniferous brachiopods have Li/Ca ratios substantially lower (generally <10 µmol/mol) than modern, Cenozoic, or Devonian samples. Mass balance considerations, constrained by δ18O of brachiopods, suggest that low Li concentrations in Permo-Carboniferous seawater could be the result of a lower flux of dissolved Li from the continents and/or a higher flux of Li from seawater to clastic marine sediments. Nonluminescent Devonian brachiopods from a single hand specimen have Li/Ca ratios around 70% of the modern average. These Li/Ca ratios can be explained by either somewhat higher temperature with constant seawater Li/Ca, somewhat lower seawater Li/Ca at constant temperature, or a combination of slightly elevated temperature and slightly lower seawater Li/Ca

    Ar-40/Ar-39 Ages for Maskelynites and K-Rich Melt from Olivine-Rich Lithology in (Kanagawa) Zagami

    Get PDF
    We report Ar/Ar release patterns for small maskelynite grains and samples of a K-rich phase separated from the basaltic shergottite Zagami. The purpose of the work is to investigate the well-known discrepancy between published Ar/Ar ages of Zagami, >200 Ma, and its age of approx. 170 Ma as determined by other methods [1-6]. Niihara et al. [7] divide less abundant darker material present in Zagami into an olivine-rich lithology (ORL), from which most of our samples came, and a pyroxene-rich one (Dark Mottled-Lithology: DML) [8, 9]. ORL consists of vermicular fayalitic olivine, coarse-grained pyroxene, maskelynite, and a glassy phase exceptionally rich in K (up to 8.5 wt%), Al, and Si, but poor in Fe and Mg. The elemental composition suggests a late-stage melt, i.e., residual material that solidified late in a fractional crystallization sequence. Below we refer to it as "K-rich melt." The K-rich melt contains laths of captured olivine, Ca-rich pyroxene, plagioclase, and opaques. It seemed to offer an especially promising target for Ar-40/Ar-39 dating

    Ar-40/Ar-39 Ages of Maskelynite Grains from ALHA 77005

    Get PDF
    We present Ar-40/Ar-39 measurements for twelve small (20-60 micro-g) maskelynite samples from the heavily shocked martian meteorite ALHA 77005. The reported modal composition for ALHA 77005 is 50-60% olivine (Fa28), 30-40% pyroxene (Wo5Fs23En72), approx.8% maskelynite (An53), and approx.2% opaques by volume [1]). The meteorite is usually classified as a lherzolite. Previous Studies - Ar-40/Ar-39 results from previous work display disturbed release spectra [2,3]. In study [2], Ar-40/Ar-39 measurements on a 52-mg whole-rock sample produced an extremely disturbed release spec-trum, with all calculated apparent ages > 1 Ga, (Fig. 1). In a subsequent study [3], a light and a dark phase were analyzed. A 2.3-mg sample of the light, relatively low-K phase produced a disturbed release spectrum. For the first 20% of the Ar-39(sub K), most of the apparent ages exceeded >1 Ga; the remaining 80% yielded ages between 0.3-0.5 Ga. The integrated age for this phase is 0.9 Ga

    Ar-Ar and Rb-Sr Ages of the Tissint Olivine-phyric Martian Shergottite

    Get PDF
    The fifth martian meteorite fall, Tissint, is an olivine-phyric shergottite that contains olivine macrocrysts (approximately 1.5 mm) [1]. [2] reported the Sm-Nd age of Tissint as 596 plus or minus 23 Ma along with Rb-Sr data that defined no isochron. [3] reported Lu-Hf and Sm-Nd ages of 583 plus or minus 86 Ma and 616 plus or minus 67 Ma, respectively. The cosmic-ray exposure ages of Tissint are 1.10 plus or minus 0.15 Ma based on 10Be [4], and 1.0-1.1 Ma, based on 3He, 21Ne, and 38Ar [5,6].We report Ar-Ar ages and Rb-Sr data
    corecore