Ar-Ar AND Rb-Sr AGES OF THE TISSINT OLIVINE–PHYRIC MARTIAN SHERGOTTITE.

J. Park^{1,2,3}, G.F. Herzog^{1,2}, L.E. Nyquist⁴, C.-Y. Shih⁵, B. Turrin^{1,6}, F.N. Lindsay^{1,2}, J.S. Delaney^{1,2}, C.C. Swisher III^{1,6} and C. Agee⁷. ¹Rutgers Univ., Piscataway, NJ 08854, (Email: jisun.park@rutgers.edu), ²Dept Chem. & Chem. Biol., ³Lunar & Planet. Inst., Houston, Texas 77058, ⁴KR/NASA Johnson Space Center, Houston, TX 77058, ⁵NASA-JSC-JETS, Houston TX 77058, ⁶Dept. Earth Planet. Sci., ⁷Institute of Meteoritics & Dept. Earth Planet. Sci., Univ. New Mexico, Albuquerque, NM 87131.

Introduction: The fifth martian meteorite fall, Tissint, is an olivine-phyric shergottite that contains olivine macrocrysts (\sim 1.5 mm) [1]. [2] reported the Sm-Nd age of Tissint as 596 \pm 23 Ma along with Rb-Sr data that defined no isochron. [3] reported Lu-Hf and Sm-Nd ages of 583 \pm 86 Ma and 616 \pm 67 Ma, respectively. The cosmic-ray exposure ages of Tissint are 1.10 \pm 0.15 Ma based on 10 Be [4], and 1.0-1.1 Ma, based on 3 He, 21 Ne, and 38 Ar [5,6].We report Ar-Ar ages and Rb-Sr data

Samples and Experimental methods: Sample Tissint-1 (1005 μ g) consisted of fine-grained groundmass comprising mostly pyroxene and maskelynite; sample Tissint-Oli-2 (1360 μ g) consisted of one big olivine macrocryst (~1 mm in diameter). We also separated maskelynite grains which were divided into four samples, each with a mass of ~30 μ g. The isotopes ^{36,37,38,39,40}Ar were measured with a MAP 215-50 mass spectrometer [7]. Rb-Sr analysis was performed on Finnigan-MAT 261 and 262 mass spectrometers [8].

Results & Discussion: The preliminary 40 Ar/ 39 Ar plateau and conventional isochron ages of Tissint-1 are 707 ± 29 (1- σ) Ma and 610 ± 33 Ma, respectively. The Ar/Ar, Sm-Nd, and Lu-Hf ages [2,3] are just consistent at the 2- σ level. The preliminary 40 Ar/ 39 Ar plateau age of Tissint-Oli-2 is ~3 Ga. The high apparent age suggests the presence of excess 40 Ar derived, possibly, from trapped melt inclusions with K₂O ~0.02-0.54 [9]. It seems more likely, however, that the olivine macrocryst preserved 40 Ar inherited from the mantle in spite of later shock/heating.

Fifteen analyses of bulk samples and separated minerals showed the Rb-Sr system likely to have been disturbed by internal redistribution of Rb, and possibly affected by external disturbances [10]. Nonetheless, six samples - a whole rock residue after leaching, three maskelynite samples, and one each of the pyroxene, and olivine mineral separates - gave a well-defined isochron for an age of 621±17 Ma (n =6, MSWD=1.1). Some pyroxene and olivine mineral separates after leaching are displaced toward high Rb/Sr ratios relative to this isochron. The bulk rock leachate and one pyroxene separate are displaced towards low Rb/Sr and/or high ⁸⁷Sr/⁸⁶Sr ratios, the latter suggestive of external contamination. Maskelynite separates show no detectable disturbances, and define initial ⁸⁷Sr/⁸⁶Sr = 0.700746±7. This value is the lowest so far observed for a Martian meteorite.

References: [1] Irving A.J. et al. (2012) *LPSC 43*, 2510.pdf. [2] Brennecka G.A. et al. (2013) *LPSC 44*, 1786.pdf. [3] Grosshans T.E. et al. (2013) *LPSC 44*, 2872.pdf. [4] Nishiizumi K. et al. (2012) *MPS 75*, 5349.pdf. [5] Huber L. et al. (2013) *LPSC 44*, 1534.pdf. [6] Murty S.V.S et al. (2012) *MPS 75*, 5038.pdf. [7] Turrin B.D. et al. (2010) *G*³ *11*, doi:10.1029/2009GC003013. [8] Nyquist L.E. et al. (2009) *GCA 73*, 4288-4309. [9] Sonzogni Y. and Treiman A.H. (2013) *LPSC 44*, 1049.pdf [10] Baziotis I.P. et al. (2013) *Nature* doi:10.1038/ncomms2414.