671 research outputs found

    Spinal anesthesia for cesarean delivery in a woman with neuromyelitis optica.

    Get PDF
    Neuromyelitis optica (NMO), or Devic's disease, is an idiopathic severe demyelinating disease that preferentially affects the optic nerve and spinal cord. Neuraxial anesthesia in women with multiple sclerosis is widely accepted, but reports of the use of neuraxial anesthesia in patients with NMO are scarce. We report the case of a morbidly obese primigravida undergoing a planned cesarean delivery at 32 weeks' gestation due to an acute exacerbation of NMO, managed with spinal anesthesia. Other than increased intraoperative hyperalgesia requiring inhaled nitrous oxide/oxygen, the mother experienced no apparent anesthetic-related complications

    Developing an objective indicator of fatigue: An alternative mobile version of the Psychomotor Vigilance Task (m-PVT)

    Get PDF
    Approximately 20% of the working population report symptoms of feeling fatigued at work. The aim of the study was to investigate whether an alternative mobile version of the ‘gold standard’ Psychomotor Vigilance Task (PVT) could be used to provide an objective indicator of fatigue in staff working in applied safety critical settings such as train driving, hospital staffs, emergency services, law enforcements, etc., using different mobile devices. 26 participants mean age 20 years completed a 25-min reaction time study using an alternative mobile version of the Psychomotor Vigilance Task (m-PVT) that was implemented on either an Apple iPhone 6s Plus or a Samsung Galaxy Tab 4. Participants attended two sessions: a morning and an afternoon session held on two consecutive days counterbalanced. It was found that the iPhone 6s Plus generated both mean speed responses (1/RTs) and mean reaction times (RTs) that were comparable to those observed in the literature while the Galaxy Tab 4 generated significantly lower 1/RTs and slower RTs than those found with the iPhone 6s Plus. Furthermore, it was also found that the iPhone 6s Plus was sensitive enough to detect lower mean speed of responses (1/RTs) and significantly slower mean reaction times (RTs) after 10-min on the m-PVT. In contrast, it was also found that the Galaxy Tab 4 generated mean number of lapses that were significant after 5-min on the m-PVT. These findings seem to indicate that the m-PVT could be used to provide an objective indicator of fatigue in staff working in applied safety critical settings such as train driving, hospital staffs, emergency services, law enforcements, etc

    Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes

    Get PDF
    Fibroblast activation protein (FAP), as described so far, is a type II cell surface serine protease expressed by fibroblastic cells in areas of active tissue remodelling such as tumour stroma or healing wounds. We investigated the expression of FAP by fibroblast-like synoviocytes (FLSs) and compared the synovial expression pattern in rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Synovial tissue from diseased joints of 20 patients, 10 patients with refractory RA and 10 patients with end-stage OA, was collected during routine surgery. As a result, FLSs from intensively inflamed synovial tissues of refractory RA expressed FAP at high density. Moreover, FAP expression was co-localised with matrix metalloproteinases (MMP-1 and MMP-13) and CD44 splice variants v3 and v7/8 known to play a major role in the concert of extracellular matrix degradation. The pattern of signals appeared to constitute a characteristic feature of FLSs involved in rheumatoid arthritic joint-destructive processes. These FAP-expressing FLSs with a phenotype of smooth muscle actin-positive myofibroblasts were located in the lining layer of the synovium and differ distinctly from Thy-1-expressing and non-proliferating fibroblasts of the articular matrix. The intensity of FAP-specific staining in synovial tissue from patients with RA was found to be different when compared with end-stage OA. Because expression of FAP by RA FLSs has not been described before, the findings of this study highlight a novel element in cartilage and bone destruction of arthritic joints. Moreover, the specific expression pattern qualifies FAP as a therapeutic target for inhibiting the destructive potential of fibroblast-like synovial cells

    Exercise-Induced Changes in Pulmonary Artery Stiffness in Pulmonary Hypertension

    Get PDF
    Background: Pulmonary hypertension causes pulmonary artery (PA) stiffening, which overloads the right ventricle (RV). Since symptoms of pulmonary hypertension (PH) are exacerbated by exercise, exercise-induced PA stiffening is relevant to cardiopulmonary status. Here, we sought to demonstrate the feasibility of using magnetic resonance imaging (MRI) for non-invasive assessment of exercise-induced changes in PA stiffness in patients with PH.Methods: MRI was performed on 7 PH patients and 8 age-matched control subjects at rest and during exercise stress. Main pulmonary artery (MPA) relative area change (RAC) and pulse wave velocity (PWV) were measured from 2D-PC images. Invasive right heart catheterization (RHC) was performed on 5 of the PH patients in conjunction with exercise stress to measure MPA pressures and stiffness index (β).Results: Heart rate and cardiac index (CI) were significantly increased with exercise in both groups. In controls, RAC decreased from 0.27 ± 0.05 at rest to 0.22 ± 0.06 with exercise (P < 0.05); a modest increase in PWV was not significant (P = 0.06). In PH patients, RAC decreased from 0.15 ± 0.02 to 0.11 ± 0.01 (P < 0.05) and PWV and β increased from 3.9 ± 0.54 m/s and 1.86 ± 0.12 at rest to 5.75 ± 0.70 m/s and 3.25 ± 0.26 with exercise (P < 0.05 for both), respectively. These results confirm increased MPA stiffness with exercise stress in both groups and the non-invasive metrics of MPA stiffness correlated well with β. Finally, as assessed by PWV but not RAC, PA stiffness of PH patients increased more than that of controls for comparable levels of moderate exercise.Conclusion: These results demonstrate the feasibility of using MRI for non-invasive assessment of exercise-induced changes in MPA stiffness in a small, heterogeneous group of PH patients in a research context. Similar measurements in a larger cohort are required to investigate differences between PWV and RAC for estimation of MPA stiffness

    Acute Sleep Deprivation and Circadian Misalignment Associated with Transition onto the First Night of Work Impairs Visual Selective Attention

    Get PDF
    Background: Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from a day shift to night shift. Methodology/Principal Findings: To test this hypothesis we measured selective attention (with visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly greater on the first night compared to subsequent nights (p<.05) indicating an impaired ability to sustain focus. The nighttime decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p<.05). Conclusions/Significance: These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents, and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective countermeasures for performance deficits during night work

    A Unique Radiation Scheme for the Treatment of High-Grade Non-Metastatic Soft Tissue Sarcoma: The Detroit Medical Center Experience

    Get PDF
    Purpose:This is the initial report on the utilization of combined photon irradiation followed by a neutron boost irradiation for the initial management of patients with high-grade non-metastatic soft tissue sarcoma (STS). We present data on local control, complications, disease-free survival and overall survival in patients at high risk for local relapse

    Physiological and autonomic stress responses after prolonged sleep restriction and subsequent recovery sleep in healthy young men

    Get PDF
    Purpose Sleep restriction is increasingly common and associated with the development of health problems. We investigated how the neuroendocrine stress systems respond to prolonged sleep restriction and subsequent recovery sleep in healthy young men. Methods After two baseline (BL) nights of 8 h time in bed (TIB), TIB was restricted to 4 h per night for five nights (sleep restriction, SR, n = 15), followed by three recovery nights (REC) of 8 h TIB, representing a busy workweek and a recovery weekend. The control group (n = 8) had 8 h TIB throughout the experiment. A variety of autonomic cardiovascular parameters, together with salivary neuropeptide Y (NPY) and cortisol levels, were assessed. Results In the control group, none of the parameters changed. In the experimental group, heart rate increased from 60 +/- 1.8 beats per minute (bpm) at BL, to 63 +/- 1.1 bpm after SR and further to 65 +/- 1.8 bpm after REC. In addition, whole day low-frequency to-high frequency (LF/HF) power ratio of heart rate variability increased from 4.6 +/- 0.4 at BL to 6.0 +/- 0.6 after SR. Other parameters, including salivary NPY and cortisol levels, remained unaffected. Conclusions Increased heart rate and LF/HF power ratio are early signs of an increased sympathetic activity after prolonged sleep restriction. To reliably interpret the clinical significance of these early signs of physiological stress, a follow-up study would be needed to evaluate if the stress responses escalate and lead to more unfavourable reactions, such as elevated blood pressure and a subsequent elevated risk for cardiovascular health problems.Peer reviewe

    Response of the Human Circadian System to Millisecond Flashes of Light

    Get PDF
    Ocular light sensitivity is the primary mechanism by which the central circadian clock, located in the suprachiasmatic nucleus (SCN), remains synchronized with the external geophysical day. This process is dependent on both the intensity and timing of the light exposure. Little is known about the impact of the duration of light exposure on the synchronization process in humans. In vitro and behavioral data, however, indicate the circadian clock in rodents can respond to sequences of millisecond light flashes. In a cross-over design, we tested the capacity of humans (n = 7) to respond to a sequence of 60 2-msec pulses of moderately bright light (473 lux) given over an hour during the night. Compared to a control dark exposure, after which there was a 3.5±7.3 min circadian phase delay, the millisecond light flashes delayed the circadian clock by 45±13 min (p<0.01). These light flashes also concomitantly increased subjective and objective alertness while suppressing delta and sigma activity (p<0.05) in the electroencephalogram (EEG). Our data indicate that phase shifting of the human circadian clock and immediate alerting effects can be observed in response to brief flashes of light. These data are consistent with the hypothesis that the circadian system can temporally integrate extraordinarily brief light exposures

    The Vigilance Decrement in Executive Function Is Attenuated When Individual Chronotypes Perform at Their Optimal Time of Day

    Get PDF
    Time of day modulates our cognitive functions, especially those related to executive control, such as the ability to inhibit inappropriate responses. However, the impact of individual differences in time of day preferences (i.e. morning vs. evening chronotype) had not been considered by most studies. It was also unclear whether the vigilance decrement (impaired performance with time on task) depends on both time of day and chronotype. In this study, morning-type and evening-type participants performed a task measuring vigilance and response inhibition (the Sustained Attention to Response Task, SART) in morning and evening sessions. The results showed that the vigilance decrement in inhibitory performance was accentuated at non-optimal as compared to optimal times of day. In the morning-type group, inhibition performance decreased linearly with time on task only in the evening session, whereas in the morning session it remained more accurate and stable over time. In contrast, inhibition performance in the evening-type group showed a linear vigilance decrement in the morning session, whereas in the evening session the vigilance decrement was attenuated, following a quadratic trend. Our findings imply that the negative effects of time on task in executive control can be prevented by scheduling cognitive tasks at the optimal time of day according to specific circadian profiles of individuals. Therefore, time of day and chronotype influences should be considered in research and clinical studies as well as real-word situations demanding executive control for response inhibition.This work was supported by the Spanish Ministerio de Ciencia e Innovación (Ramón y Cajal programme: RYC-2007-00296 and PLAN NACIONAL de I+D+i: PSI2010-15399) and Junta de Andalucía (SEJ-3054)
    corecore