48 research outputs found
An evaluation of auroral all-sky camera observations
From photometric, all-sky camera, and visual observations
of a moderate auroral display, it is found that the
all-sky camera compares favorably with the visual observer
in detecting and recording auroral forms. The visual
observer can make instantaneous observations and so can
detect rapid changes and auroral forms lasting only a few
seconds, whereas the poorer time resolution of the all-sky
camera prevents it from recording very short-lived phenonema.
However, the ability of the all-sky camera to accurately
record the shape and intensity of the majority of auroral
forms allows it to yield more precise and complete information
about these aspects of auroral morphology than is
normally obtained through visual observation.Ye
AMPS definition study on Optical Band Imager and Photometer System (OBIPS)
A study was conducted to define the characteristics of a modular optical diagnostic system (OBIPS) for AMPS, to provide input to Phase B studies, and to give information useful for experiment planning and design of other instrumentation. The system described consists of visual and UV-band imagers and visual and UV-band photometers; of these the imagers are most important because of their ability to measure intensity as a function of two spatial dimensions and time with high resolution. The various subsystems of OBIPS are in themselves modular with modules having a high degree of interchangeability for versatility, economy, and redundancy
Sounding of the Cleft Ion Fountain Energization Region
The objectives of the ground-based observations in support of the SCIFER are: Acquire and display ionospheric conditions prior to launch to aid in the establishment of launch criteria in real time. Observers at both stations participated in real-time visual interpretation. Solar wind data from IMP-8 and WIND were acquired and interpreted in real time. Telephonic and data links were established at the observatory for the launch window period. Ground-based observatory countdown and launch criteria were developed. 2) Relate optical and magnetic ionospheric signatures observed from the ground to magnetospheric boundaries in the energetic particle flux measured at the payload. The energetic electron trapping boundary was found to correspond to the equatorward edge of the discrete auroral arcs forming the dayside aurora. The energetic electron trapping boundary was found to correspond to the poleward edge of pulsating aurora. The pulsating aurora was found to correspond to one second bursts of energy-dispersed electrons originating in the equatorial plane. Pulsations at larger intervals corresponded to travel times to the conjugate region and return. The pulsating aurora was also directly linked to the geomagnetic pulsations and traveling magnetic vortices, all occurring equatorward of the trapping boundary. 630 nm emission corresponding to less than 10 eV electron precipitation was observed equatorward of the trapping boundary (L=15) and ascribed to photoelectrons from the sunlit conjugate region. 3) Aid in the interpretation of time/space incongruities in the rocket data. The motion of the payload conjugate across the aurora showed that the payload passed over three distinct arc systems on the poleward side of the trapping boundary. These results were reported in a series of articles to be printed in Geophysical Research Letters on June 15, l996
Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations
International audienceThe arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF) and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA), the Interplanetary Shock Propagation Model (ISPM) and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2) were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV) have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks) and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr) was in the range of 0.7?0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver) which directly influenced energetic particle rise times. This model also illustrated the non-uniform upstream conditions through which the various shocks propagated; furthermore it simulated shock deformation on a scale of fractions of an AU. On the spatial scale (300 RE ), where near-Earth spacecraft are located, the passing shocks, in conformity with the models, were found to be locally planar. The shocks also showed tilting relative to the Sun-Earth line, probably reflecting the inherent directionality associated with their solar origin. Key words. Interplanetary physics (energetic particles; interplanetary shocks; solar wind plasma
Intra-season variations in distribution and abundance of humpback whales in the West Antarctic Peninsula using cruise vessels as opportunistic platforms
Fine-scale knowledge of spatiotemporal dynamics in cetacean distribution and abundance throughout the Western Antarctic Peninsula (WAP) is sparse yet essential for effective ecosystem-based management (EBM). Cruise vessels were used as platforms of opportunity to collect data on the distribution and abundance of humpback whales (Megaptera novaeangliae) during the austral summer of 2019/2020 in a region that is also important for the Antarctic krill (Euphausia superba) fishery, to assess potential spatiotemporal interactions for future use in EBM. Data were analyzed using traditional design-based line transect methodology and spatial density surface hurdle models fitted using a set of physical environmental covariates to estimate the abundance and distribution of whales in the area, and to describe their temporal dynamics. Our results indicate a rapid increase in humpback whale abundance in the Bransfield and Gerlache Straits through December, reaching a stable abundance by mid-January. The distribution of humpback whales appeared to change from a patchier distribution in the northern Gerlache Strait to a significantly concentrated presence in the central Gerlache and southern Bransfield Straits, followed by a subsequent dispersion throughout the area. Abundance estimates agreed well with previous literature, increasing from approximately 7000 individuals in 2000 to a peak of 19,107 in 2020. Based on these estimates, we project a total krill consumption of between 1.4 and 3.7Â million tons based on traditional and contemporary literature on per capita krill consumption of whales, respectively. When taken in the context of krill fishery catch data in the study area, we conclude that there is minimal spatiotemporal overlap between humpback whales and fishery activity during our study period of November-January. However, there is potential for significant interaction between the two later in the feeding season, but cetacean survey efforts need to be extended into late season in order to fully characterize this potential overlap.Publisher PDFPeer reviewe
Linking Fishing Behavior and Ecosystem Dynamics Using Social and Ecological Network Models
One goal of ecosystem-based management is studying an ecosystem and its people, the socio-ecological system, in a qualitative and quantitative modeling approach that can provide management agencies with possible outcomes of their actions using scenario forecasting. Ecosystem-based fisheries management strives to use the socio-ecological system approach, including direct and indirect impacts on multiple species including the behavioral responses of fishers after a regulatory change (a gillnet ban). Here, we link fisher behavioral networks with a mass-balanced food-web ECOPATH network model of an estuarine ecosystem and its commercial fisheries for an analysis of fishing impacts after a gillnet ban on multiple species using ECOSIM. We modeled fisher behavioral networks using reported catches of species from individual fishers along with the gear fished to create nodes in a gear/species affiliation network. Individual fishers with common gear/species use are indicative of common fishing behavior. When such fishers have high network centrality and are engaged in multiple gear/species fisheries, they can transition to other gear/species fisheries along “switching pathways” when facing a regulatory change. We used an index of joint gear participation to identify likely gear switching pathways, and we predicted changes in fishing effort after a gill net ban. We simulated the gill net ban in ECOSIM under two scenarios of fishing effort: Scenario 1, gill net fishing effort of 0%; Scenario 2, gill net fishing effort of 0% with increased effort in the alternative gear fisheries using the predicted switching pathways for the affiliation network. Scenario 1 predicted an increase in flounder (Paralichthys spp.) biomass over a decade. Under Scenario 2, fishers targeting flounders were predicted to switch from gill nets to pound nets. Scenario 2 predicted a 7% decline in flounder biomass over ten years, rather than an increase in flounders. The gillnet ban with increased effort due to switching is predicted to have the opposite effect on the conservation goal, which was to increase flounder stocks. Fishery management that incorporates a socio-ecological approach modeling both fisher behaviors and multi-species ecosystem responses can reveal single-species responses that are in the opposite direction of the anticipated management goals