273 research outputs found

    Minimal model estimation of glucose absorption and insulin sensitivity from oral test : validation with a tracer method

    Get PDF
    Measuring insulin sensitivity during the physiological milieu of oral glucose perturbation, e.g., a meal or an oral glucose tolerance test, would be extremely valuable but difficult since the rate of appearance of absorbed glucose is unknown. The reference method is a tracer two-step one: first, the rate of appearance of glucose (R(a meal)(ref)) is reconstructed by employing the tracer-to-tracee ratio clamp technique with two tracers and a model of non-steady-state glucose kinetics; next, this R(a meal)(ref) is used as the known input of a model describing insulin action on glucose kinetics to estimate insulin sensitivity (SI(ref)). Recently, a nontracer method based on the oral minimal model (OMM) has been proposed to estimate simultaneously the above quantities, denoted R(a meal) and SI, respectively, from plasma glucose and insulin concentrations measured after an oral glucose perturbation. This last method has obvious advantages over the tracer method, but its domain of validity has never been assessed against a reference method. It is thus important to establish whether or not the "nontracer" R(a meal) and SI compare well with the "tracer" R(a meal)(ref) and SI(ref). We do this comparison on a database of 88 subjects, and it is very satisfactory: R(a meal) profiles agree well with the R(a meal)(ref) and correlation of SI(ref) with SI is r = 0.86 (P < 0.0001). We conclude that OMM candidates as a reliable tool to measure both the rate of glucose absorption and insulin sensitivity from oral glucose tests without employing tracers

    Liver triacylglycerol content and gestational diabetes: effects of moderate energy restriction

    Get PDF
    Aims/hypothesis Women with a history of gestational diabetes mellitus (GDM) have raised liver triacylglycerol. Restriction of energy intake in type 2 diabetes can normalise glucose control and liver triacylglycerol concentration but it is not known whether similar benefits could be achieved in GDM. The aim of this work was to examine liver triacylglycerol accumulation in women with GDM and the effect of modest energy restriction. Methods Sixteen women with GDM followed a 4 week diet (5 MJ [1200 kcal]/day). Liver triacylglycerol, before and after diet and postpartum, was measured by magnetic resonance. Insulin secretion and sensitivity were assessed before and after diet. Twenty-six women who underwent standard antenatal care for GDM (matched for age, BMI, parity and ethnicity) were used as a comparator group. Results Fourteen women, who completed the study, achieved a weight loss of 1.6 ± 1.7 kg over the 4 week dietary period. Mean weight change was −0.4 kg/week in the study group vs +0.3 kg/week in the comparator group (p = 0.002). Liver triacylglycerol level was normal but decreased following diet (3.7% [interquartile range, IQR 1.2–6.1%] vs 1.8% [IQR 0.7–3.1%], p = 0.004). There was no change in insulin sensitivity or production. Insulin was required in six comparator women vs none in the study group (eight vs two required metformin). Blood glucose control was similar for both groups. The hypo-energetic diet was well accepted. Conclusions/interpretation Liver triacylglycerol in women with GDM was not elevated, unlike observations in non-pregnant women with a history of GDM. A 4 week hypo-energetic diet resulted in weight loss, reduced liver triacylglycerol and minimised pharmacotherapy. The underlying pathophysiology of glucose metabolism appeared unchanged

    Computational assessment of insulin secretion and insulin sensitivity from 2-h oral glucose tolerance tests for clinical use for type 2 diabetes

    Get PDF
    In type 2 diabetes mellitus, glucose homeostasis is tightly maintained through insulin secretion and insulin sensitivity. Therefore, finding an accurate method to assess insulin secretion and sensitivity using clinically available data would enhance the quality of diabetic medical care. In an effort to find such a method, we developed a computational approach to derive indices of these factors using a 2-h oral glucose tolerance test (OGTT). To evaluate our method, clinical data from subjects who received an OGTT and a glucose clamp test were examined. Our insulin secretion index was significantly correlated with an analogous index obtained from a hyperglycemic clamp test (r = 0.90, n = 46, p < 0.001). Our insulin sensitivity index sensitivity was also significantly correlated with an analogous index obtained from a hyperinsulinemic-euglycemic clamp test (r = 0.56, n = 79, p < 0.001). These results suggest that our method can potentially provide an accurate and convenient tool toward improving the management of diabetes in clinical practice by assessing insulin secretion and insulin sensitivity

    Primary Defects in β-Cell Function Further Exacerbated by Worsening of Insulin Resistance Mark the Development of Impaired Glucose Tolerance in Obese Adolescents

    Get PDF
    OBJECTIVE—Impaired glucose tolerance (IGT) is a pre-diabetic state of increasing prevalence among obese adolescents. The purpose of this study was to determine the natural history of progression from normal glucose tolerance (NGT) to IGT in obese adolescents

    Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms

    Get PDF
    OBJECTIVE: Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that regulate metabolism and life span. We used peripheral blood mononuclear cells (PBMCs) to determine ex vivo whether insulin resistance/metabolic syndrome influences SIRTs. We also assessed the potential mechanisms linking metabolic alterations to SIRTs in human monocytes (THP-1) in vitro. RESEARCH DESIGN AND METHODS: SIRT1-SIRT7 gene and protein expression was determined in PBMCs of 54 subjects (41 with normal glucose tolerance and 13 with metabolic syndrome). Insulin sensitivity was assessed by the minimal model analysis. Subclinical atherosclerosis was assessed by carotid intima-media thickness (IMT). In THP-1 cells exposed to high glucose or fatty acids in vitro, we explored SIRT1 expression, p53 acetylation, Jun NH(2)-terminal kinase (JNK) activation, NAD(+) levels, and nicotinamide phosphoribosyltransferase (NAMPT) expression. The effects of SIRT1 induction by resveratrol and of SIRT1 gene silencing were also assessed. RESULTS: In vivo, insulin resistance and metabolic syndrome were associated with low PBMC SIRT1 gene and protein expression. SIRT1 gene expression was negatively correlated with carotid IMT. In THP-1 cells, high glucose and palmitate reduced SIRT1 and NAMPT expression and reduced the levels of intracellular NAD(+) through oxidative stress. No effect was observed in cells exposed to linoleate or insulin. High glucose and palmitate increased p53 acetylation and JNK phosphorylation; these effects were abolished in siRNA SIRT1-treated cells. Glucose- and palmitate-mediated effects on NAMPT and SIRT1 were prevented by resveratrol in vitro. CONCLUSIONS: Insulin resistance and subclinical atherosclerosis are associated with SIRT1 downregulation in monocytes. Glucotoxicity and lypotoxicity play a relevant role in quenching SIRT1 expression

    Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice?

    Get PDF
    Critically ill patients are highly variable in their response to care and treatment. This variability and the search for improved outcomes have led to a significant increase in the use of protocolized care to reduce variability in care. However, protocolized care does not address the variability of outcome due to inter- and intra-patient variability, both in physiological state, and the response to disease and treatment. This lack of patient-specificity defines the opportunity for patient-specific approaches to diagnosis, care, and patient management, which are complementary to, and fit within, protocolized approaches
    corecore