9 research outputs found

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Stability of resonant configurations during the migration of planets and constraints on disk-planet interactions

    Get PDF
    We study the stability of mean-motion resonances (MMR) between two planets during their migration in a protoplanetary disk. We use an analytical model of resonances and describe the effect of the disk by a migration timescale (T-m,T-i) and an eccentricity damping timescale (T-e,T-i) for each planet (i = 1; 2 for the inner and outer planets, respectively). We show that the resonant configuration is stable if T-e,T-1/T-e,T-2 > (e(1)/e(2))(2). This general result can be used to put constraints on specific models of disk-planet interactions. For instance, using classical prescriptions for type-I migration, we show that when the angular momentum deficit (AMD) of the inner orbit is greater than the outer's orbit AMD, resonant systems must have a locally inverted disk density profile to stay locked in resonance during the migration. This inversion is very atypical of type-I migration and our criterion can thus provide an evidence against classical type-I migration. That is indeed the case for the Jupiter-mass resonant systems HD 60532b, c (3: 1 MMR), GJ 876b, c (2: 1 MMR), and HD 45364b, c (3: 2 MMR). This result may be evidence of type-II migration (gap-opening planets), which is compatible with the high masses of these planets

    Giant Planet Formation and Migration

    Get PDF
    © 2018, The Author(s). Planets form in circumstellar discs around young stars. Starting with sub-micron sized dust particles, giant planet formation is all about growing 14 orders of magnitude in size. It has become increasingly clear over the past decades that during all stages of giant planet formation, the building blocks are extremely mobile and can change their semimajor axis by substantial amounts. In this chapter, we aim to give a basic overview of the physical processes thought to govern giant planet formation and migration, and to highlight possible links to water delivery.S.-J. Paardekooper is supported by a Royal Society University Research Fellowship. A. Johansen is supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council (grant 2014-5775) and the European Research Council (ERC Starting Grant 278675-PEBBLE2PLANET)

    Planetary Migration in Protoplanetary Disks

    Get PDF
    The known exoplanet population displays a great diversity of orbital architectures, and explaining the origin of this is a major challenge for planet formation theories. The gravitational interaction between young planets and their protoplanetary disks provides one way in which planetary orbits can be shaped during the formation epoch. Disk-planet interactions are strongly influenced by the structure and physical processes that drive the evolution of the protoplanetary disk. In this review we focus on how disk-planet interactions drive the migration of planets when different assumptions are made about the physics of angular momentum transport, and how it drives accretion flows in protoplanetary disk models. In particular, we consider migration in discs where: (i) accretion flows arise because turbulence diffusively transports angular momentum; (ii) laminar accretion flows are confined to thin, ionised layers near disk surfaces and are driven by the launching of magneto-centrifugal winds, with the midplane being completely inert; (iii) laminar accretion flows pervade the full column density of the disc, and are driven by a combination of large scale horizontal and vertical magnetic fields

    Formation, Orbital and Internal Evolutions of Young Planetary Systems

    No full text

    Disk Dispersal: Theoretical Understanding and Observational Constraints

    No full text

    Formation of Terrestrial Planets

    No full text
    The past decade has seen major progress in our understanding of terrestrial planet formation. Yet key questions remain. In this review we first address the growth of 100 km-scale planetesimals as a consequence of dust coagulation and concentration, with current models favoring the streaming instability. Planetesimals grow into Mars-sized (or larger) planetary embryos by a combination of pebble- and planetesimal accretion. Models for the final assembly of the inner Solar System must match constraints related to the terrestrial planets and asteroids including their orbital and compositional distributions and inferred growth timescales. Two current models -- the Grand-Tack and low-mass (or empty) primordial asteroid belt scenarios -- can each match the empirical constraints but both have key uncertainties that require further study. We present formation models for close-in super-Earths -- the closest current analogs to our own terrestrial planets despite their very different formation histories -- and for terrestrial exoplanets in gas giant systems. We explain why super-Earth systems cannot form in-situ but rather may be the result of inward gas-driven migration followed by the disruption of compact resonant chains. The Solar System is unlikely to have harbored an early system of super-Earths; rather, Jupiter's early formation may have blocked the ice giants' inward migration. Finally, we present a chain of events that may explain why our Solar System looks different than more than 99\% of exoplanet systems

    Setting the Stage: Planet Formation and Volatile Delivery

    No full text
    corecore