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ABSTRACT

We study the stability of mean-motion resonances (MMR) between two planets during their migration in a protoplanetary disk. We
use an analytical model of resonances and describe the effect of the disk by a migration timescale (Tm,i) and an eccentricity damping
timescale (Te,i) for each planet (i = 1, 2 for the inner and outer planets, respectively). We show that the resonant configuration is stable
if Te,1/Te,2 > (e1/e2)2. This general result can be used to put constraints on specific models of disk-planet interactions. For instance,
using classical prescriptions for type-I migration, we show that when the angular momentum deficit (AMD) of the inner orbit is greater
than the outer’s orbit AMD, resonant systems must have a locally inverted disk density profile to stay locked in resonance during the
migration. This inversion is very atypical of type-I migration and our criterion can thus provide an evidence against classical type-I
migration. That is indeed the case for the Jupiter-mass resonant systems HD 60532b, c (3:1 MMR), GJ 876b, c (2:1 MMR), and
HD 45364b, c (3:2 MMR). This result may be evidence of type-II migration (gap-opening planets), which is compatible with the high
masses of these planets.
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1. Introduction

In Delisle et al. (2014), we showed that tidal dissipation raised
by the star on two resonant planets can produce three kinds of
distinct evolutions depending on the relative strength of the dis-
sipation in both planets. The three different outcomes of this tidal
process are systems that stay in resonance, systems that leave the
resonance with an increasing period ratio (Pout/Pin), and sys-
tems that leave the resonance with a decreasing period ratio. For
known near resonant systems, the comparison of the period ratio
of the planets with respect to the nominal resonant value helps to
put constraints on the tidal dissipation undergone by each planet
and thus on the nature of the planets (see Delisle et al. 2014). In
this article, we generalize our reasoning to other forms of dissi-
pation, in particular to disk-planet interactions.

Disk-planet interactions can induce migration of the plan-
ets (e.g., Goldreich & Tremaine 1979). In the case of conver-
gent migration (i.e., decreasing period ratio), the planets can
be locked in resonance (e.g., Weidenschilling & Davis 1985).
Two planets that are locked in resonance have their eccentric-
ities excited on the migration timescale (e.g., Weidenschilling
& Davis 1985). However, disk-planet interactions also induce
exponential eccentricity damping. Depending on the respective
timescales of the migration and eccentricity damping, the system
can reach a stationary state in which eccentricities stay constant
(Lee & Peale 2002). The semi-major axes continue to evolve,
but the semi-major axis ratio (or period ratio) stays locked at the
resonant value. Recently, Goldreich & Schlichting (2014) have
shown that this equilibrium is unstable in the case of the cir-
cular restricted three-body problem where the inner planet has
negligible mass. This means that after the resonance locking, the

eccentricity of the inner planet reaches an equilibrium value but
then undergoes larger and larger oscillations around this equi-
librium value until the system reaches the resonance separatrix
and leaves the resonance. Then, the period ratio is no longer
locked at the resonant value, and the convergent migration con-
tinues (decreasing period ratio) until the system reaches another
resonance. The timescale of the resonance escape is given by
the eccentricity damping timescale and is thus short compared
to the migration timescale (see Goldreich & Schlichting 2014).
Therefore, Goldreich & Schlichting (2014) conclude that when
the disk disappears and the migration stops, only a few systems
should be observed in resonance. However, this conclusion is
mainly based on a particular case in which the mass of the inner
planet is much lower than the mass of the outer planet whose ec-
centricity is negligible, and the migration and damping forces
are only undergone by the inner planet. As shown in Delisle
et al. (2014), the evolution of a resonant system under dissipation
strongly depends on which planet is affected by the dissipation.
In this paper we study a more general case in which both planets
have masses, eccentricities, and undergo dissipative forces.

In Sect. 2 we introduce the notations and the model of the
resonant motion in the conservative case that we developed in
Delisle et al. (2014). In Sect. 3 we study the dissipative evolution
of resonant planets in a very general framework (Sect. 3.1), and
we apply this modeling to disk-planet interactions (Sect. 3.2). In
Sect. 4 we show how our model can be used to put constraints
on disk properties for observed resonant systems. In Sect. 5
we apply these analytical constraints to selected examples and
compare them to numerical simulations. We specifically study
HD 60532b, c (3:1 resonance, Sect. 5.1) GJ 876b, c (2:1 reso-
nance, Sect. 5.2), and HD 45364b, c (3:2 resonance, Sect. 5.3).
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2. Resonant motion in the conservative case

In the following, we refer to the star as Body 0, to the inner planet
as Body 1, and to the outer planet as Body 2. We denote mi as
the masses of the three bodies and introduce µi = G(m0 + mi)
and βi = m0mi/(m0 + mi), where G is the gravitational constant.
We only consider the planar case in this study.

In Delisle et al. (2014) we constructed a simplified and in-
tegrable model of the resonant motion in the conservative and
planar case. The main simplification of this model is to assume
that the eccentricity ratio (e1/e2) stays close to the forced eccen-
tricities ratio (e1,ell/e2,ell). These forced eccentricities correspond
to the eccentricities at the elliptical fixed point at the resonance
libration center. With this assumption, and assuming moderate
eccentricities1, the Hamiltonian of the system can be simpli-
fied (see Delisle et al. 2014) to the following simple pendulum
Hamiltonian

H = −ε2 + 2Rδq/2 cos(qθ), (1)

where q is the degree of the resonance (q = k2 − k1 for a k2:k1
resonance), ε is the action coordinate that provides a measure of
the distance to the exact commensurability, and θ is the unique
resonant angle in this simplified model. This angle is a combi-
nation of both usual resonant angles (σi = k2

q λ2 − k1
q λ1 − $i,

see Appendix B, Eqs. (B.4) and (B.6), and Delisle et al. 2014).
Here, R is a constant that depends on the masses of the bodies
and on the considered resonance (see Delisle et al. 2014), and δ
is a constant of motion (parameter of the model). We have

ε = Λ1 − Λ1,0 + Λ2 − Λ2,0, (2)
δ = Λ1,0 −G1 + Λ2,0 −G2, (3)

where Λi is the renormalized circular angular momentum of
planet i, and Gi its renormalized angular momentum (see
Appendix A and Delisle et al. 2014). The subscript 0 denotes
the values at the exact commensurability. The quantities Λi only
depend on the semi-major axis ratio α = a1/a2

Λ1(α) =
1

(k2/k1) + (β2/β1)
√
µ2/(µ1α)

(4)

≈ 1
(k2/k1) + (m2/m1)/

√
α
,

Λ2(α) =
1

1 + (k2/k1)(β1/β2)
√
µ1α/µ2

(5)

≈ 1
1 + (k2/k1)(m1/m2)

√
α
·

At the exact commensurability, we have

α0 =

(
µ2

µ1

)1/3 (
k1

k2

)2/3

≈
(

k1

k2

)2/3

· (6)

The quantities Gi depend on α and on the planet eccentricities

Gi(α, ei) = Λi(α)
√

1 − e2
i . (7)

1 The pendulum approximation of resonances is obtained using an an-
alytical expansion in power series of eccentricities and is thus not valid
at high eccentricities. Moreover, when eccentricities are vanishing, the
phase space bifurcates, and a better approximation is given by the sec-
ond fundamental model of resonances (see Henrard & Lemaitre 1983;
Delisle et al. 2012).
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Fig. 1. Phase space of a resonance of order q in the simplified
pendulum-like approximation (Hamiltonian (1)). θ is the unique reso-
nant angle and ε its conjugated action. The separatrix is highlighted in
red. The amplitude A (defined with θmax see Eq. (12)) is 0 at the center
of the resonance (elliptical fixed point) and 1 at the separatrix.

We denote Ii as the renormalized angular momentum deficit
(AMD) of planet i (Laskar 1997, 2000)

Ii = Λi −Gi =
1
2

Λiξ
2
i ∝ e2

i , (8)

with

ξi =

√
2
(
1 −

√
1 − e2

i

)
≈ ei. (9)

The simplifying assumption introduced in Delisle et al. (2014)
implies (see also Appendix B)

I2

I1
=

I2,ell

I1,ell
≡ tan2 φ, (10)

where φ is a constant angle and Ii,ell are values of the renormal-
ized AMD at the center of the resonance (elliptical fixed point,
see Delisle et al. 2014). We also denote D as the renormalized
total AMD

D = I1 + I2 = δ + ε. (11)

The parameter δ corresponds to the renormalized total AMD at
the exact commensurability (δ = D0). Thus, for a resonant sys-
tem, δ provides a measure of the planet eccentricities (δ ∝ e2,
see Eq. (8)). Figure 1 shows the phase space corresponding to
Hamiltonian (1). The width of the resonant area is proportional
to δq/4 ∝ eq/2 for a resonance of order q (see Fig. 1). For a reso-
nant system, in the regime of moderate eccentricities, a measure
(between 0 and 1) of the relative amplitude of libration (ampli-
tude of libration versus resonance width) is given by (see Delisle
et al. 2014)

A = sin2
(qθmax

2

)
, (12)

where θmax is the maximum value reached by the resonant an-
gle θ during a libration period (see Fig. 1).

Our simplifying assumption (eccentricity ratio close to the
forced eccentricities ratio) is verified well when the amplitude
of libration is small (A � 1) and the system stays close to the
elliptical fixed point. For high amplitude of libration (A ∼ 1), the
eccentricity ratio undergoes oscillations around the forced value,
and our model only provides a first approximation of the motion
(see Delisle et al. 2014).
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3. Resonant motion in the dissipative case

In this section we describe the evolution of a resonant system
undergoing dissipation. The main parameters that have to be
tracked during this evolution are the parameter δ, which de-
scribes the evolution of the phase space (and of the eccentric-
ities for resonant systems) and the relative amplitude A, which
describes the spiraling of the trajectory with respect to the sepa-
ratrix of the resonance.

3.1. General case

We now consider a dissipative force acting on the semi-major
axes and the eccentricities of both planets. We first consider a
very general case and do not assume a particular form for this
dissipation, except that it acts on a long timescale. The evolution
of the system can be described by the three following timescales
(which may depend on the eccentricities and semi-major axes
of the planets): (ξ1/ξ̇1)d, (ξ2/ξ̇2)d, (α/α̇)d. For sufficiently small
eccentricities, we have ξi ≈ ei, and

ξ̇i

ξi

∣∣∣∣∣∣
d
≈ ėi

ei

∣∣∣∣∣
d
· (13)

The evolution of the parameter δ that drives the evolution of the
phase space (and of the eccentricities for resonant systems) is
given by (see Appendix C)

δ̇|d = 2
(
cos2 φ

ξ̇1

ξ1

∣∣∣∣∣∣
d

+ sin2 φ
ξ̇2

ξ2

∣∣∣∣∣∣
d

)
D

+
Λ2 − sin2 φ

2
α̇

α

∣∣∣∣∣
d
D +

q
k1

Λ1Λ2

2
α̇

α

∣∣∣∣∣
d
· (14)

For a resonant system, the evolution of the relative amplitude of
libration reads as (see Delisle et al. 2014, Appendix A)〈
Ȧ
〉

=
1

2Rδq/2

(
〈εε̇|d〉 − q

4δ

〈
ε2δ̇|d

〉)
, (15)

with

ε̇|d = − q
k1

Λ1Λ2

2
α̇

α

∣∣∣∣∣
d
· (16)

3.2. Disk-planet interactions

We now apply Eqs. (14), (15) to the specific case of disk-planet
interactions. Because of these interactions, the planets undergo
a torque that induces a modification in their orbital elements and
subsequent migration in the disk (e.g., Goldreich & Tremaine
1979, 1980). In particular, the angular momentum of each planet
evolves on an exponential timescale Tm,i owing to this migration,
while eccentricities evolve on an exponential timescale Te,i (e.g.,
Papaloizou & Larwood 2000; Terquem & Papaloizou 2007;
Goldreich & Schlichting 2014):

˙̂Gi

Ĝi

∣∣∣∣∣∣∣
d

= − 1
Tm,i

, (17)

ėi

ei

∣∣∣∣∣
d

= − 1
Te,i

, (18)

where Ĝi is the angular momentum of planet i. From these sim-
ple decay laws, we can deduce the evolution of the parameters
of interest for resonant systems (δ̇ and Ȧ, see Sect. 3.1). We have

ξ̇i

ξi

∣∣∣∣∣∣
d
≈ ėi

ei

∣∣∣∣∣
d

= − 1
Te,i

, (19)

ȧi

ai

∣∣∣∣∣
d

= − 2
Tm,i

+ 2
ξ2

i

1 − ξ2
i

ξ̇i

ξi

∣∣∣∣∣∣
d
≈ − 2

Tm,i
− 2

ξ2
i

Te,i
· (20)

The evolution of the semi-major axis ratio is thus governed by

α̇

α

∣∣∣∣∣
d

=
2

Tm
+

4
Λ1Λ2

(
Λ1 sin2 φ

Te,2
− Λ2 cos2 φ

Te,1

)
D, (21)

with

1
Tm

=
1

Tm,2
− 1

Tm,1
· (22)

From Eq. (14) we obtain

δ̇|d =
q
k1

Λ1Λ2

Tm
+

Λ2 − sin2 φ

Tm
D− 2

(
cos2 φ

Te,1
+

sin2 φ

Te,2

)
D

+ 2
q
k1

(
Λ1 sin2 φ

Te,2
− Λ1 cos2 φ

Te,1

)
D

=
q
k1

Λ1Λ2

Tm
−D

[
2(Λ1 + Λ2)

(
k2

k1

cos2 φ

Te,1
+

sin2 φ

Te,2

)
−Λ2 − sin2 φ

Tm

]
, (23)

where we neglect second order terms in D (D2 ∝ e4). We now
introduce

1
TM

=
q
k1

Λ1Λ2

Tm
, (24)

1
TE

= 2(Λ1 + Λ2)
(

k2

k1

cos2 φ

Te,1
+

sin2 φ

Te,2

)
− Λ2 − sin2 φ

Tm
· (25)

We thus have

δ̇|d =
1

TM
− D

TE
, (26)〈

δ̇|d
〉

=
1

TM
− δ

TE
· (27)

The damping timescale is often much shorter than the migration
timescale (Te,i � Tm,i, e.g., Goldreich & Tremaine 1980), thus

1
TE
≈ 2(Λ1 + Λ2)

(
k2

k1

cos2 φ

Te,1
+

sin2 φ

Te,2

)
· (28)

The timescales TE , TM can be expressed using more usual
notations

1
TM
≈ q

k1

2k2

k1
+

m2

m1

1√
α0

+

(
k1

k2

)2 m1

m2

√
α0

−1

×
(

1
Tm,2

− 1
Tm,1

)
, (29)

1
TE
≈ 2

(
1 +

m1

m2

√
α0

) (
1 +

k2

k1

m1

m2

√
α0

)−1

×
 1
Te,2

+
k2

k1

m1

m2

(
e1

e2

)2

ell

√
α0

1
Te,1

 1+
m1

m2

(
e1

e2

)2

ell

√
α0

−1

. (30)
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Depending on the values of TM and TE , different evolution sce-
narios for δ are possible. All these equations remain valid for
TM and TE negative. In most cases the disk induces a damping
of eccentricities (Te,i > 0, thus TE > 0), but some studies (e.g.,
Goldreich & Sari 2003) suggest that an excitation of the eccen-
tricities by the disk is possible (Te,i < 0, thus TE < 0). The
timescale TM is positive if the period ratio between the plan-
ets (P2/P1) decreases (convergent migration). But if the planets
undergo divergent migration (P2/P1 increases), TM is negative.
This does not depend on the absolute direction (inward or out-
ward) of the migration of the planets in the disk but only on the
evolution of their period ratio.

In the case of divergent migration, the planets cannot get
trapped in resonance (e.g., Henrard & Lemaitre 1983). The sys-
tem always ends up with a period ratio higher than the resonant
value, and this does not depend on the damping or excitation of
eccentricities.

The case of convergent migration is more interesting. If the
initial period ratio is higher than the resonant value, the plan-
ets can be locked in resonance. This induces an excitation of the
eccentricities of the planets (δ̇|M = 1/TM > 0). If TE < 0 (excita-
tion of eccentricities by the disk) or TE � TM (inefficient damp-
ing), δ (as well as the eccentricities) does not stop increasing.
When eccentricities reach values that are too high, the system
becomes unstable, and the resonant configuration is broken.

The most common scenario is the case of efficient damping
of eccentricities (0 < TE . TM). In this case, δ reaches an equi-
librium value (〈δ̇|d〉 = 0, see Eq. (27))

δeq =
TE

TM

=
q

2k1

Λ1Λ2

Λ1 + Λ2

(
1

Tm,2
− 1

Tm,1

) (
k2

k1

cos2 φ

Te,1
+

sin2 φ

Te,2

)−1

≈ q
2

1 +
m1

m2

(
e1

e2

)2

ell

√
α0


×

(
k1 + k2 + k2

m1

m2

√
α0 + k1

m2

m1

1√
α0

)−1

×
(

1
Tm,2

− 1
Tm,1

)  1
Te,2

+
k2

k1

m1

m2

(
e1

e2

)2

ell

√
α0

1
Te,1

−1

· (31)

However, as shown by Goldreich & Schlichting (2014) for the
restricted three body problem, this equilibrium can be unstable.
Even if the parameter δ reaches the equilibrium δeq and the phase
space of the system stops evolving, the amplitude of libration can
increase until the system crosses the separatrix and escapes from
resonance.

We now compute the evolution of this amplitude of libration.
According to Eq. (15), we need to compute 〈εε̇|d〉 and 〈ε2δ̇|d〉. We
have

〈εε̇|d〉 = 2
q
k1

(
Λ2 cos2 φ

Te,1
− Λ1 sin2 φ

Te,2

) 〈
ε2

〉
, (32)

〈
ε2δ̇|d

〉
=

(
1

TM
− δ

TE

) 〈
ε2

〉
=

〈
δ̇|d

〉 〈
ε2

〉
, (33)

where 〈ε2〉 can be computed using elliptic integrals (see Delisle
et al. 2014)〈
ε2

〉
≈ 2Rδq/2A. (34)

The first term (〈εε̇|d〉) does not depend on the migration
timescale but only on the damping timescale. The second

term (〈ε2δ̇|d〉) vanishes when the system reaches the equilibrium
δ = δeq, since δ̇|d = 0. This is not surprising because the first term
describes the evolution of the absolute amplitude of libration ε2,
while the second one describes the evolution of the resonance
width, which does not evolve if the phase space does not evolve
(constant δ). Finally, we obtain (see Eq. (15))

Ȧ
A

∣∣∣∣∣∣
d

= 2
q
k1

(
Λ2 cos2 φ

Te,1
− Λ1 sin2 φ

Te,2

)
· (35)

The amplitude of libration increases if

Λ2 cos2 φ

Te,1
>

Λ1 sin2 φ

Te,2
, (36)

which is equivalent to

Te,1

Te,2
<

(
ξ1

ξ2

)2

ell
· (37)

Using ξi ≈ ei, this gives

A↗ ⇐⇒ Te,1

Te,2
<

(
e1

e2

)2

ell
, (38)

where the eccentricity ratio is evaluated at the elliptical fixed
point (ell subscript) at the center of the resonance. In the circu-
lar restricted case studied by Goldreich & Schlichting (2014),
e2 = 0 and Te,2 = +∞, so the amplitude always increases
(Eq. (38)) and the equilibrium is unstable. However, in the op-
posite restricted case (e1 = 0 and Te,1 = +∞), which was not
addressed in Goldreich & Schlichting (2014), the amplitude al-
ways decreases (Eq. (38)) leading to a stable equilibrium.

This result is based on our approximation that the eccentric-
ity ratio remains close to the forced value (value at the elliptical
fixed point). This is verified for a small amplitude of libration,
but when the amplitude increases, the eccentricity ratio oscillates
and may differ significantly from the forced value. Our model
thus only provides a first approximation of the mean value of
this ratio in the case of a high amplitude of libration.

To sum up, the evolution of a resonant pair of planets un-
dergoing disk-planet interactions mainly depends on two param-
eters: TE/TM (damping vs. migration timescale) and Te,1/Te,2
(damping in inner planet vs. outer planet). The ratio TE/TM gov-
erns the equilibrium eccentricities of the planets (see Eqs. (27),
(31)). The ratio Te,1/Te,2 governs the stability of this equilibrium
(see Eqs. (35), (38)).

4. Constraints on disk properties

In this section, we show how the classification of the outcome of
disk-planet interactions can be used to put constraints on the dis-
sipative forces undergone by the planets and thus on some disk
properties. More precisely, if a system is currently observed to
harbor two planets locked in a mean-motion resonance (MMR),
it is probable that this resonant configuration was stable (or un-
stable but with a very long timescale) when the disk was present.
We could imagine that the configuration was highly unstable, but
the protoplanetary disk disappeared before the system had time
to escape from resonance. However, this would require a fine
tuning of the disk disappearing timing. Thus the amplitude of
libration was probably either decreasing or increasing on a very
long timescale. This induces that

Te,1

Te,2
&

(
e1

e2

)2

ell
· (39)
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Moreover, a small amplitude of libration is probably the sign of
a damping of the amplitude on a short timescale

Te,1

Te,2
�

(
e1

e2

)2

ell
· (40)

On the opposite, a large amplitude of libration could be the sign
of a long timescale of amplitude damping or a long timescale
of amplitude excitation. Indeed, if the amplitude was increasing
fast, the system should not be observed in resonance. If it was
decreasing fast, the observed amplitude should be very small.
However, another mechanism may be responsible for the exci-
tation of the amplitude of libration, possibly after the disk dis-
appears (e.g., presence of a third planet in the system). Thus we
cannot exclude the case of a fast damping of the amplitude of
libration, even in the case of an observed large amplitude,

Te,1

Te,2
&

(
e1

e2

)2

ell
· (41)

In addition to the constraints obtained from the observed am-
plitude of libration, the observed values of both eccentricities
is also an important information. If the planets did not undergo
other sources of dissipation after the disk had disappeared, the
present eccentricities should still correspond to the equilibrium
ones. For close-in planets, the tides raised by the star on the plan-
ets induce a significant dissipative evolution of the system after
the disk disappeared (e.g., Delisle & Laskar 2014). Therefore,
this reasoning only applies for systems farther from the star for
which tidal interactions have a negligible effect on the orbits over
the age of the system. We recall that the equilibrium eccentrici-
ties are given by (Eq. (31)):

δ = δeq =
TE

TM
, (42)

with

δ ≈ 1
2

(Λ1ξ
2
1 + Λ2ξ

2
2)

≈
(

k2

k1
+

m2

m1

1√
α

)−1 e2
1

2
+

(
1 +

k2

k1

m1

m2

√
α

)−1 e2
2

2
· (43)

Here, δ can be computed from the known (observed) orbital ele-
ments of the planets. Thus, the ratio TE/TM of the damping and
migration timescales is constrained by the observations. This ra-
tio depends on the four timescales (Te,1, Te,2, Tm,1, and Tm,2) of
the model (see Eq. (31)), which themselves depend on the prop-
erties of the disk and the planets. There is a wide diversity of
disk models in the literature, which would result in significantly
different migration and damping timescales for each planet. Our
analytical model is very general and can handle these different
models as long as expressions for Te,1, Te,2, Tm,1, and Tm,2 are
available.

We consider here the case of type-I migration to illustrate
the possibility of constraining the disk properties for observed
systems. Following the prescriptions of Kley & Nelson (2012),
we have

Tm,1

Tm,2
≈ m2

m1

√
a2

a1

(
H(a1)/a1

H(a2)/a2

)2
Σ(a2)
Σ(a1)

, (44)

Te,i

Tm,i
≈

(
H(ai)

ai

)2

, (45)

where H(a) is the local disk scale height and Σ(a) ∝ a−βΣ its lo-
cal surface density. The standard MMSN (minimum mass solar

nebula) model assumes Σ ∝ a−3/2 (βΣ = 3/2). The disk aspect
ratio, H/a, is often assumed to be roughly constant and of the or-
der of 0.05 (e.g., Kley & Nelson 2012). Using these assumptions
we obtain

Tm,1

Tm,2
≈ m2

m1
αβΣ−1/2, (46)

Tm,1

Te,1
≈ Tm,2

Te,2
≈

(H
a

)−2

· (47)

For the sake of brevity, we introduce

τ =
m2

m1
αβΣ−1/2 ≈ Tm,1

Tm,2
≈ Te,1

Te,2
, (48)

K =

(H
a

)−2

≈ Tm,1

Te,1
≈ Tm,2

Te,2
· (49)

If the system is observed with a small amplitude of libration in
the resonance, we have (Eq. (40))

τ �
(

e1

e2

)2

ell
, (50)

and if the amplitude is large we have (Eq. (41))

τ &

(
e1

e2

)2

ell
. (51)

The lower limit we obtain for τ corresponds to an upper limit for
the density profile exponent βΣ (see Eq. (48)). In particular, if

m2

m1
α−1/2 <

(
e1

e2

)2

ell
, (52)

then the density profile of the disk must be inverted (βΣ < 0, i.e.,
the surface density increases with the distance to the star) for the
system to be stable in resonance. The condition of Eq. (52) is
roughly equivalent to

I1 > I2, (53)

where I1 and I2 are the AMD of both planets.
We recall that in order to be captured in resonance, the

planets must undergo convergent migration (e.g., Henrard &
Lemaitre 1983). This puts another constraint on the parameter τ
(see Eq. (48))

τ > 1. (54)

Again, this corresponds to an upper limit for βΣ, and if

m2

m1
α−1/2 < 1, (55)

then the density profile of the disk must be inverted (βΣ < 0) for
the planets to undergo convergent migration. The condition of
Eq. (55) is roughly equivalent to

Λ1 > Λ2, (56)

where Λ1 and Λ2 are the circular angular momenta of both
planets.

The constraint provided by the observation of the equilib-
rium eccentricities reads as (see Eq. (31))

δeq =
C1

K
τ − 1
τ + C2

, (57)
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with

C1 =
1
2

1 +
m1

m2

(
e1

e2

)2

ell

√
α0

 (58)

×
(
1 +

k2

q
m1

m2

√
α0 +

k1

q
m2

m1

1√
α0

)−1

,

C2 =
k2

k1

m1

m2

(
e1

e2

)2

ell

√
α0, (59)

and δeq is given by Eq. (43). We thus have

K =
C1

δ

τ − 1
τ + C2

, (60)

where C1, C2, and δ can all be derived from the observations.
We note that K is an increasing function of τ (Eq. (60)), so our
analytical criterion for stability provides a lower bound for both
τ and K.

5. Application to observed resonant systems

In the following we apply our analytical criteria to systems that
are observed in resonance. We also performed N-body simula-
tions with the additional migration and damping forces exerted
by the disk on the planets. We used the ODEX integrator (e.g.,
Hairer et al. 2010), and the dissipative timescales Tm,i (angular
momentum evolution) and Te,i (eccentricity evolution) are fixed
for each planet and each simulation.

Many multiplanetary systems are observed close to different
MMR (period ratio close to a resonant value). However, only
a few of them have a determination of the planets orbital pa-
rameters that is precise enough to distinguish between resonant
motion and near-resonant motion. To our knowledge, all known
resonant planet pairs are giant planets (better precision of or-
bital parameters). We thus selected three of these resonant giant
planet pairs to illustrate our model.

Giant planets are believed to undergo type-II migration. Our
analytical model is very general and can take any prescription
for the evolution of the angular momentum and the eccentric-
ity of each planet into account. We did not find a simple ana-
lytical prescription for type-II migration in the literature. Indeed
type-II migration is a more complex (nonlinear) mechanism than
type-I migration, and it is not yet well understood. In particular,
the timescale of type-II migration is still being discussed (e.g.,
Duffell et al. 2014; Dürmann & Kley 2015). However, the effect
of type-II migration is expected to be similar to type-I migration
(i.e., inward migration and damping of eccentricities, e.g., Bitsch
& Kley 2010). The main difference is that the disk profile is af-
fected by the presence of the planets (gap around the planets), so
the timescales of migration and damping are slowed down. We
thus chose to apply type-I migration prescriptions for our study
of these giant planets resonant systems as a first approximation.

5.1. HD 60532b, c: 3:1 MMR, large amplitude of libration

The star HD 60532 hosts two planets (see Desort et al. 2008) that
exhibit a 3:1 period ratio. Laskar & Correia (2009) performed a
dynamical study of the system and confirm the 3:1 MMR be-
tween the planets with a large amplitude of libration (∼40◦).
We reproduced the orbital elements of the planets (taken from
Laskar & Correia 2009) in Table 1. For this system, the forced

Table 1. Orbital parameters of HD 60532b,c used in this study (taken
from Laskar & Correia 2009).

Parameter [Unit] b c
m [MJ] 3.1548 7.4634
P [day] 201.83 607.06
a [AU] 0.7606 1.5854
e 0.278 0.038

Notes. The stellar mass is 1.44 M�.

eccentricity ratio (ratio of eccentricity at the center of the reso-
nance) is(

e1

e2

)
ell
≈ 3. (61)

Since the system is observed with a large amplitude of libration,
the stability constraint gives (Eq. (51))

τ &

(
e1

e2

)2

ell
≈ 9. (62)

This value is much greater than one, so the condition of conver-
gent migration is fulfilled (see Eq. (54)). This value of τ corre-
sponds to a surface density profile exponent of (see Eq. (48))

βΣ . −1.3. (63)

We recall that for the MMSN model, βΣ = 3/2. The negative
value we obtain corresponds to an inverted density profile. This
inverted density profile is very atypical for type-I migration. This
result is thus proof that the planets did not undergo classical
type-I migration. This is not surprising since giant planets are
expected to open a gap and undergo type-II migration. Our re-
sults also constrain a type-II migration scenario. Indeed, inde-
pendently of the migration prescriptions, for the resonance to be
stable, the damping of the outer eccentricity must be much more
efficient than the inner eccentricity damping (Te,1/Te,2 & 9). One
would need prescriptions for type-II migration to relate this re-
sult to some disk and/or planets properties.

From the observed orbital elements we obtain (see Eqs. (43),
(58), and (59))

δ = 6.5 × 10−3, (64)
C1 = 0.44, (65)
C2 = 7.9. (66)

Using τ & 9, the current eccentricities should be reproduced with
(see Eq. (60))

K & 30, (67)

which corresponds to an aspect ratio of (see Eq. (49))

H
a
. 0.18. (68)

We performed numerical simulations with different values of τ.
For each simulation, the value of K is computed using Eq. (60),
in order to reproduce the equilibrium eccentricities. We fixed
Tm,2 = 5 × 105 yr for all simulations and integrated the system
for 106 yr. We thus have Tm,1 = 5× 105τ yr, Te,2 = 5× 105/K yr,
Te,1 = 5 × 105τ/K yr. The semi-major axes are initially 10 and
22 au, such that the system is initially outside of the 3:1 reso-
nance with a period ratio of about 3.3. Both eccentricities are
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Fig. 2. Semi-major axes, period ratio, eccentricities, eccentricity ratio, and angles evolution for simulations of HD 60532b, c with different dis-
sipation timescale ratios τ = Te,1/Te,2 = Tm,1/Tm,2. The ratio K = Tm,i/Te,i is set according to Eq. (60) to reproduce the observed equilibrium
eccentricities. We used τ = +∞, 10, 8, 4 with K = 70, 34, 30, 17, respectively, for the four shown simulations (four columns). The amplitude of
libration decreases for the first two simulations (τ = +∞, 10) and increases for the last two (τ = 8, 4). The value given by our analytical criterion
for the transition between decreasing and increasing amplitude is τ ∼ 9.

initially set to 0.001 with anti-aligned periastrons and coplanar
orbits. The planets are initially at periastrons (zero anomalies).
The evolution of the semi-major axes, the period ratio, the eccen-
tricities, the eccentricity ratio, and the angles are shown in Fig. 2.
These simulations confirm our analytical results: for τ < 9, the
amplitude of libration decreases, and for τ > 9 the amplitude
increases (see Fig. 2).

5.2. GJ 876b, c: 2:1 MMR, small amplitude of libration

GJ 876 is an M dwarf that hosts four planets (Delfosse et al.
1998; Marcy et al. 1998, 2001; Rivera et al. 2010). The plan-
ets b and c, in which we are interested here (see Table 2

Table 2. Orbital parameters of GJ 876b, c used in this study (taken from
Correia et al. 2010).

Parameter [Unit] c b
m [MJ] 0.86 2.64
P [day] 30.259 61.065
a [AU] 0.132 0.211
e 0.265 0.031

Notes. The stellar mass is 0.334 M�.

for orbital elements), are Jupiter-mass planets embedded in a
2:1 MMR, while d and e are much less massive. A small
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amplitude of libration is observed (∼5◦, see Correia et al. 2010)
for the 2:1 resonance between GJ 876b, c. The forced eccentric-
ity ratio is(

e1

e2

)
ell
≈ 6.5. (69)

Since the system is observed with a small amplitude of libration,
the stability constraint gives (Eq. (50))

τ �
(

e1

e2

)2

ell
≈ 42. (70)

As for HD 60532b, c, the condition of convergent migration is
fulfilled (see Eq. (54)). The surface density profile exponent is
(see Eq. (48))

βΣ � −5.2. (71)

We again obtain a negative value that corresponds to an inverted
profile. We have (see Eqs. (43), (58), and (59))

δ = 6.4 × 10−3, (72)
C1 = 0.81, (73)
C2 = 22. (74)

Using these values and τ � 42, we obtain (see Eq. (60))

K � 80, (75)

which corresponds to an aspect ratio of (see Eq. (49))

H
a
� 0.11. (76)

As for HD 60532b, c, we performed numerical simulations with
different values of τ (and adjusted values of K given by Eq. (60)).
The semi-major axes are initially 2 and 3.5 au (period ratio of
about 2.3), and the eccentricities are 0.001 with anti-aligned pe-
riastrons and coplanar orbits. The planets are initially at perias-
trons (zero anomalies). The evolution of the semi-major axes,
the period ratio, the eccentricities, the eccentricity ratio, and the
angles are shown in Fig. 3. The transition between decreasing
and increasing amplitude of libration happens around τ ≈ 20
(see Fig. 3), while our analytical criterion gives a value of 42.
Taking this refined value for τ, the condition for reproducing the
observed system with type-I migration reads as

βΣ � −3.5, (77)
K � 58, (78)
H
a
� 0.13. (79)

The density profile still needs to be inverted (βΣ < 0), and the
overall conclusions are the same.

Lee & Peale (2002) studied capture scenarios for this sys-
tem using a slightly different model for the migration and damp-
ing and did not observe any evolution of the libration ampli-
tude in their simulations. The authors used constant semi-major
axis (Ta,i) and eccentricity (Te,i) damping timescales for each
planet. In our study we followed the prescriptions of Papaloizou
& Larwood (2000; see also Goldreich & Schlichting 2014) and
considered constant angular momentum (Tm,i) and eccentricity
(Te,i) damping timescales. We replaced these prescriptions with
Lee & Peale (2002) prescriptions for the disk-planet interactions
in our analytical model (following the same scheme as described
in Sect. 3.2). We found that the amplitude of libration does not

Table 3. Orbital parameters of HD 45364b, c used in this study (taken
from Correia et al. 2009).

Parameter [Unit] c b
m [MJ] 0.1872 0.6579
P [day] 226.93 342.85
a [AU] 0.6813 0.8972
e 0.1684 0.0974

Notes. The stellar mass is 0.82 M�.

evolve in this case (in agreement with Lee & Peale 2002 simu-
lations). This difference between both prescriptions has impor-
tant consequences since in the case of the Lee & Peale (2002)
prescriptions, two initially resonant planets will stay locked in
resonance forever, while with the prescriptions we used, the
amplitude of libration can increase and the system can escape
from resonance. The main difference between both prescriptions
comes from the fact that with Lee & Peale (2002) prescriptions,
the eccentricity damping does not affect the semi-major axes,
while in our model the eccentricity damping terms contribute
to the semi-major axes evolution (see Eq. (20)). Disk-planet in-
teraction models suggest that the semi-major axes evolution are
indeed influenced by the eccentricity damping effect of the disk
(see Goldreich & Schlichting 2014). We thus follow these pre-
scriptions in our study.

5.3. HD 45364b, c: 3:2 MMR, large amplitude of libration

The star HD 45364 hosts two planets (Correia et al. 2009) em-
bedded in a 3:2 MMR (see Table 3 for orbital elements). The
forced eccentricity ratio is(

e1

e2

)
ell
≈ 2.5. (80)

A large amplitude of libration is observed (∼70◦, see Correia
et al. 2009), therefore, the stability constraint gives (Eq. (51))

τ &

(
e1

e2

)2

ell
≈ 6.3. (81)

The condition of convergent migration is fulfilled (see Eq. (54)).
The surface density profile exponent is (see Eq. (48))

βΣ . −1.6. (82)

We again obtain a negative value that corresponds to an inverted
profile. We have (see Eqs. (43), (58), and (59))

δ = 6.0 × 10−3, (83)
C1 = 0.93, (84)
C2 = 2.3. (85)

Using these values and τ & 6.3, we obtain (see Eq. (60))

K & 9.4, (86)

which corresponds to an aspect ratio of (see Eq. (49))

H
a
. 0.33. (87)

We performed numerical simulations with different values of τ
and K (given by Eq. (60)). The semi-major axes are initially 10
and 14 au (period ratio of about 1.65), the eccentricities are 0.001
with anti-aligned periastrons and coplanar orbits. The planets
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Fig. 3. Same as Fig. 2 but for GJ 876b, c. We used τ = +∞, 20, 10, 5 with K = 130, 58, 36, 19, respectively, for the four shown simulations (four
columns). The last simulation (τ = 5, K = 19) ended before 106 yr (around 8× 105 yr) because of orbital instability when the system escaped from
resonance. The amplitude of libration decreases for the first two simulations (τ = +∞, 20) and increases for the last two (τ = 10, 5). The value
given by our analytical criterion for the transition between decreasing and increasing amplitude is τ ∼ 42.

are initially at periastrons (zero anomalies). The evolution of the
semi-major axes, the period ratio, the eccentricities, the eccen-
tricity ratio, and the angles are shown in Fig. 4. According to
our simulations, the amplitude of libration increases for τ . 10
(transition between 5−15, see Fig. 4), which is comparable to
our analytical result (τ . 6.3).

It may seem surprising that the amplitude of libration does
not increase much more rapidly for τ = 2 than for τ = 5 (see
Fig. 4). Indeed, our study shows that the smaller τ is, the more
unstable the resonant configuration (Eq. (35)). However, the evo-
lution of the amplitude of libration not only depends on the ratio
τ = Te,1/Te,2, but also on the absolute values of these damping
timescales (see Eq. (35)). In our simulations, we fixed the mi-
gration timescale for the outer planet (Tm,2) and varied the three

other timescales: Tm,1 = τTm,2, Te,2 = Tm,2/K, Te,1 = τTm,2/K.
The damping timescales are thus much longer for the simulation
with τ = 2 (K = 3.5) than for τ = 5 (K = 8), in order to re-
produce the same equilibrium eccentricities. This tends to slow
down the increase in the amplitude of libration and compensates
for the acceleration provided by decreasing τ.

6. Conclusion

We obtained a simple analytical criterion for the stability of the
resonant configuration between two planets during their migra-
tion in a protoplanetary disk. We used the simplified integrable
model of MMRs that we developed in Delisle et al. (2014) and
modeled the dissipative effect of the disk on the planets by four
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Fig. 4. Same as Fig. 2 but for HD 45364b, c. We used τ = +∞, 15, 5, 2 with K = 15, 12, 8, 3.5, respectively, for the four shown simulations (four
columns). The amplitude of libration decreases for the first two simulations (τ = +∞, 15) and increases for the last two (τ = 5, 2). The value given
by our analytical criterion for the transition between decreasing and increasing amplitude is τ ∼ 6.3.

distinct timescales: Tm,1, Tm,2 (migration of both planets), and
Te,1, Te,2 (damping of both eccentricities). As shown by Lee &
Peale (2002), migrating planets that are captured in resonance
have their eccentricities excited by the migration forces of the
disk. The eccentricities reach equilibrium values between the
migration and damping forces. However, this equilibrium can
be unstable, in which case the amplitude of libration in the res-
onance increases until the system crosses the separatrix and
escapes from resonance (Goldreich & Schlichting 2014). We
showed here that the equilibrium is stable on the condition that
Te,1/Te,2 > (e1/e2)2

ell (ratio of equilibrium eccentricities). For ob-
served resonant systems, it is probable that the equilibrium was
stable during the migration phase. Otherwise, the planets would
have escaped from resonance. This result allows one to put con-
straints on the damping forces undergone by the planets. For

instance, using prescriptions for type-I migration, we show that a
locally inverted profile is needed for resonant systems for which
the inner planet AMD is greater than the outer planet AMD. We
applied our analytical criterion to HD 60532b, c (3:1 MMR),
GJ 876b, c (2:1 MMR), and HD 45364b, c (3:2 MMR). We
showed for all studied systems that if the planets had under-
gone type I migration, an inverted density profile would be re-
quired for the resonant configuration to be stable. All these plan-
ets are Jupiter-mass planets and are thus believed to open a gap
in the disk and undergo type-II migration. Our results confirm
that classical type-I migration cannot reproduce the observed
systems.

Our model is very general and is not restricted to type-I
migration. Considering a scenario of type-II migration that is
much more realistic for the studied systems, our model still gives
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constraints on the migration process and especially on the eccen-
tricity damping undergone by each planet. However, we could
not find a simple analytical prescription for type-II migration
in the literature and thus could not derive constraints on the
disk properties in this case. Having analytical prescriptions for
type-II migration would allow a more detailed analysis of these
systems.

It would also be very interesting in the future to study small
planets in resonance (with precise enough determination of or-
bital parameters to be sure of the resonant motion). Indeed, for
small planets, a type-I migration scenario is more realistic. In
this case, a local inversion of the density profile (as needed for
the three systems of this study) would be more surprising.
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Appendix A: Renormalization of coordinates

The renormalized variables are constructed by dividing all ac-
tions by the following constant of motion (see Delisle et al. 2012,
2014)

Γ =
k2

k1
Λ̂1 + Λ̂2, (A.1)

where Λ̂i = βi
√
µiai is the circular angular momentum of the

planet i. When denoting the initial actions with a hat, the renor-
malized ones are defined by

Λi =
Λ̂i

Γ
, (A.2)

Gi =
Ĝi

Γ
, (A.3)

Ii =
Îi

Γ
, (A.4)

D =
D̂
Γ
, (A.5)

δ =
δ̂

Γ
· (A.6)

Expressions (4) and (5) are straightforwardly derived from these
definitions.

The Hamiltonian and the time also have to be renormalized
(see Delisle et al. 2012, 2014) in order to preserve Hamiltonian
properties. However, in this study, we consider dissipative forces
that act on the system on very long timescales. As long as the
conservative timescale remains much shorter than the dissipa-
tion timescale, the long-term evolution of the system is described
well by the mean effect of the dissipation on the conservative
timescale. Therefore, the rescaling of this conservative timescale
will not influence the long-term evolution of the system.

Appendix B: Reducing to an integrable problem

In the general case, the motion of two planets in a k2:k1 reso-
nance is described by two degrees of freedom, i.e. both resonant
angles,

σ1 =
k2

q
λ2 − k1

q
λ1 −$1, (B.1)

σ2 =
k2

q
λ2 − k1

q
λ1 −$2, (B.2)

and both actions I1, I2. We denote xi as the complex Cartesian
coordinates associated to these action-angle coordinates

xi =
√

Iieiσi . (B.3)

The simplifying assumption introduced in Delisle et al. (2014)
allows this generally non-integrable problem to be reduced to a
single degree of freedom (thus integrable). The only remaining
resonant angle is θ and the associated action is D. If denoting u
the related complex Cartesian coordinate

u =
√Deiθ, (B.4)

the simplifying assumption reads as

0 = cos φe−iσ2,ell x2 − sin φe−iσ1,ell x1, (B.5)
u = cos φe−iσ1,ell x1 + sin φe−iσ2,ell x2, (B.6)

where φ, σ1,ell, and σ2,ell are constant angles defined such that
the libration center is directed toward u (see Delisle et al. 2014).
Equation (B.6) shows how the simplified one degree of freedom
model mixes both initial degrees of freedom, and especially how
the resonant angle θ mixes both initial resonant angles σ1, σ2.
Equation (10) directly results from Eq. (B.5).

Appendix C: Evolution of the parameter δ under
dissipation

In this section we show how to compute the evolution of the
parameter δ (Eq. (14)) under a dissipation affecting the semi-
major axes and eccentricities of the planets. The evolution of
the renormalized circular angular momenta only depends on
(α/α̇)d. These renormalized quantities are constructed such that
(see Appendix A and Delisle et al. 2014)

Λ1

Λ2
=
β1
√
µ1

β2
√
µ2

√
α ≈ m1

m2

√
α, (C.1)

and

k2

k1
Λ1 + Λ2 = 1. (C.2)

We deduce

Λ̇1|d =
Λ1Λ2

2
α̇

α

∣∣∣∣∣
d
, (C.3)

Λ̇2|d = −k2

k1

Λ1Λ2

2
α̇

α

∣∣∣∣∣
d
· (C.4)

The evolution of ε is then straightforward (see Eq. (2))

ε̇|d = Λ̇1|d + Λ̇2|d = − q
k1

Λ1Λ2

2
α̇

α

∣∣∣∣∣
d
· (C.5)
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The evolution of the renormalized deficit of angular momen-
tum Ii is given by

İi

Ii

∣∣∣∣∣∣
d

= 2
ξ̇i

ξi

∣∣∣∣∣∣
d

+
Λ̇i

Λi

∣∣∣∣∣∣
d
, (C.6)

İ1

I1

∣∣∣∣∣∣
d

= 2
ξ̇1

ξ1

∣∣∣∣∣∣
d

+
Λ2

2
α̇

α

∣∣∣∣∣
d
, (C.7)

İ2

I2

∣∣∣∣∣∣
d

= 2
ξ̇2

ξ2

∣∣∣∣∣∣
d
− k2

k1

Λ1

2
α̇

α

∣∣∣∣∣
d

= 2
ξ̇2

ξ2

∣∣∣∣∣∣
d

+
Λ2 − 1

2
α̇

α

∣∣∣∣∣
d
· (C.8)

We thus deduce

Ḋ
D

∣∣∣∣∣∣
d

= cos2 φ
İ1

I1

∣∣∣∣∣∣
d

+ sin2 φ
İ2

I2

∣∣∣∣∣∣
d

= 2
(
cos2 φ

ξ̇1

ξ1

∣∣∣∣∣∣
d

+ sin2 φ
ξ̇2

ξ2

∣∣∣∣∣∣
d

)
+

Λ2 − sin2 φ

2
α̇

α

∣∣∣∣∣
d
· (C.9)

Finally, we have

δ̇|d = Ḋ|d − ε̇|d
= 2

(
cos2 φ

ξ̇1

ξ1

∣∣∣∣∣∣
d

+ sin2 φ
ξ̇2

ξ2

∣∣∣∣∣∣
d

)
D

+
Λ2 − sin2 φ

2
α̇

α

∣∣∣∣∣
d
D +

q
k1

Λ1Λ2

2
α̇

α

∣∣∣∣∣
d
· (C.10)
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