707 research outputs found
Finite bias Cooper pair splitting
In a device with a superconductor coupled to two parallel quantum dots (QDs)
the electrical tunability of the QD levels can be used to exploit non-classical
current correlations due to the splitting of Cooper pairs. We experimentally
investigate the effect of a finite potential difference across one quantum dot
on the conductance through the other completely grounded QD in a Cooper pair
splitter fabricated on an InAs nanowire. We demonstrate that the electrical
transport through the device can be tuned by electrical means to be dominated
either by Cooper pair splitting (CPS), or by elastic co-tunneling (EC). The
basic experimental findings can be understood by considering the energy
dependent density of states in a QD. The reported experiments add
bias-dependent spectroscopy to the investigative tools necessary to develop
CPS-based sources of entangled electrons in solid-state devices.Comment: 4 pages, 4 figure
Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts
Advanced synthesis of semiconductor nanowires (NWs) enables their application
in diverse fields, notably in chemical and electrical sensing, photovoltaics,
or quantum electronic devices. In particular, Indium Arsenide (InAs) NWs are an
ideal platform for quantum devices, e.g. they may host topological Majorana
states. While the synthesis has been continously perfected, only few techniques
were developed to tailor individual NWs after growth. Here we present three wet
chemical etch methods for the post-growth morphological engineering of InAs NWs
on the sub-100 nm scale. The first two methods allow the formation of
self-aligned electrical contacts to etched NWs, while the third method results
in conical shaped NW profiles ideal for creating smooth electrical potential
gradients and shallow barriers. Low temperature experiments show that NWs with
etched segments have stable transport characteristics and can serve as building
blocks of quantum electronic devices. As an example we report the formation of
a single electrically stable quantum dot between two etched NW segments.Comment: 9 pages, 5 figure
Local electrical tuning of the nonlocal signals in a Cooper pair splitter
A Cooper pair splitter consists of a central superconducting contact, S, from
which electrons are injected into two parallel, spatially separated quantum
dots (QDs). This geometry and electron interactions can lead to correlated
electrical currents due to the spatial separation of spin-singlet Cooper pairs
from S. We present experiments on such a device with a series of bottom gates,
which allows for spatially resolved tuning of the tunnel couplings between the
QDs and the electrical contacts and between the QDs. Our main findings are
gate-induced transitions between positive conductance correlation in the QDs
due to Cooper pair splitting and negative correlations due to QD dynamics.
Using a semi-classical rate equation model we show that the experimental
findings are consistent with in-situ electrical tuning of the local and
nonlocal quantum transport processes. In particular, we illustrate how the
competition between Cooper pair splitting and local processes can be optimized
in such hybrid nanostructures.Comment: 9 pages, 6 figures, 2 table
Point contacts in encapsulated graphene
We present a novel method to establish inner point contacts on hexagonal
boron nitride (hBN) encapsulated graphene heterostructures with dimensions as
small as 100 nm by pre-patterning the top-hBN in a separate step prior to
dry-stacking. 2 and 4-terminal field effect measurements between different lead
combinations are in qualitative agreement with an electrostatic model assuming
pointlike contacts. The measured contact resistances are 0.5-1.5 k per
contact, which is quite low for such small contacts. By applying a
perpendicular magnetic fields, an insulating behaviour in the quantum Hall
regime was observed, as expected for inner contacts. The fabricated contacts
are compatible with high mobility graphene structures and open up the field for
the realization of several electron optical proposals
Magnetic field tuning and quantum interference in a Cooper pair splitter
Cooper pair splitting (CPS) is a process in which the electrons of naturally
occurring spin-singlet pairs in a superconductor are spatially separated using
two quantum dots. Here we investigate the evolution of the conductance
correlations in an InAs CPS device in the presence of an external magnetic
field. In our experiments the gate dependence of the signal that depends on
both quantum dots continuously evolves from a slightly asymmetric Lorentzian to
a strongly asymmetric Fano-type resonance with increasing field. These
experiments can be understood in a simple three - site model, which shows that
the nonlocal CPS leads to symmetric line shapes, while the local transport
processes can exhibit an asymmetric shape due to quantum interference. These
findings demonstrate that the electrons from a Cooper pair splitter can
propagate coherently after their emission from the superconductor and how a
magnetic field can be used to optimize the performance of a CPS device. In
addition, the model calculations suggest that the estimate of the CPS
efficiency in the experiments is a lower bound for the actual efficiency.Comment: 5 pages + 4 pages supplementary informatio
Kondo effect and spin-active scattering in ferromagnet-superconductor junctions
We study the interplay of superconducting and ferromagnetic correlations on
charge transport in different geometries with a focus on both a quantum point
contact as well as a quantum dot in the even and the odd state with and without
spin-active scattering at the interface. In order to obtain a complete picture
of the charge transport we calculate the full counting statistics in all cases
and compare the results with experimental data. We show that spin-active
scattering is an essential ingredient in the description of quantum point
contacts. This holds also for quantum dots in an even charge state whereas it
is strongly suppressed in a typical Kondo situation. We explain this feature by
the strong asymmetry of the hybridisations with the quantum dot and show how
Kondo peak splitting in a magnetic field can be used for spin filtering. For
the quantum dot in the even state spin-active scattering allows for an
explanation of the experimentally observed mini-gap feature.Comment: 14 pages, 7 figures, accepted by PR
An Analysis of Musculoskeletal Variables, Comparative to Team Norms, Leading to an ACL Rupture
Please refer to the pdf version of the abstract located adjacent to the title
Dust Removal Technology Demonstration for a Lunar Habitat
We have developed an Electrodynamic Dust Shield (EDS), an active dust mitigation technology with applications to solar panels, thermal radiators, optical systems, visors, seals and connectors. This active technology is capable of removing dust and granular material with diameters as large as several hundred microns. In this paper, we report on the development of three types of EDS systems for NASA's Habitat Demonstration Unit (HDU). A transparent EDS 20 cm in diameter with indium tin oxide electrodes on a 0.1 mm-thick polyethylene terephtalate (PET) film was constructed for viewport dust protection. Two opaque EDS systems with copper electrodes on 0.1 mm-thick Kapton were also built to demonstrate dust removal on the doors of the HDU. A lotus coating that minimizes dust adhesion was added to one of the last two EDS systems to demonstrate the effectiveness of the combined systems
Quantum interference structures in the conductance plateaus of gold nanojunctions
The conductance of breaking metallic nanojunctions shows plateaus alternated
with sudden jumps, corresponding to the stretching of stable atomic
configurations and atomic rearrangements, respectively. We investigate the
structure of the conductance plateaus both by measuring the voltage dependence
of the plateaus' slope on individual junctions and by a detailed statistical
analysis on a large amount of contacts. Though the atomic discreteness of the
junction plays a fundamental role in the evolution of the conductance, we find
that the fine structure of the conductance plateaus is determined by quantum
interference phenomenon to a great extent.Comment: 4 pages, 4 figure
Integration of the Electrodynamic Dust Shield on a Lunar Habitat Demonstration Unit
NASA is developing a Habitat Demonstration Unit (HDU) to investigate the feasibility of lunar surface technologies and lunar ground operations. The HDU will define and validate lunar scenario architecture through field analog testing. It will contain a four-port vertical habitat module with docking demonstration capabilities. The Electrodynamic Oust Shield (EDS) is being incorporated into the HDU to demonstrate dust removal from a viewport and from a door prior to docking procedures. In this paper, we will describe our efforts to scale up the EDS to protect a viewport 20 cm in diameter. We will also describe the development of several 20 cm x 25 cm EDS patches to demonstrate dust removal from one of the HDU doors
- …