76 research outputs found
Nootropics use in the workplace. Psychiatric and ethical aftermath towards the new frontier of bioengineering
OBJECTIVE:
The authors have sought to expound upon and shed a light on the rise of nootropics, which have gradually taken on a more and more relevant role in workplaces and academic settings.
MATERIALS AND METHODS:
Multidisciplinary databases have been delved into by entering the following keys: "nootropics", "cognitive enhancement", "workplace", "productivity", "ethics", "bioengineering". In addition, a broad-ranging search has been undertaken on institutional websites in order to identify relevant analysis and recommendations issued by international institutions and agencies. Papers and reports have been independently pored over by each author. This search strategy has led to the identification of 988 sources but only 64 were considered appropriate for the purposes of the paper after being selected by at least 3 of the authors, independently.
RESULTS:
The notion of an artificially enhanced work performance - carried out by the 'superworker' - is particularly noteworthy and resonates with the conception of contemporary work on so many different levels: the rising need and demands for higher degrees of flexibility and productivity on the job, the implications of a '24/7' society, where more and more services are available at any time, the ever greater emphasis on entrepreneurial spirit, individual self-reliance and self-improvement, and last but not least, the impact of an ageing society on economic standards and performance.
CONCLUSIONS:
Moreover, it is worth mentioning that human enhancement technologies will predictably and increasingly go hand in hand with gene editing, bioengineering, cybernetics and nanotechnology. Applications are virtually boundless, and may ultimately affect all human traits (physical strength, endurance, vision, intelligence and even personality and mood)
Are mast cells implicated in asphyxia?
In a previous immunohistochemical (IHC) study, we documented the reaction of lung tissue vessels to hypoxia
through the immunodetection of HIF1-α protein, a key regulator of cellular response to hypoxic conditions. Findings
showing that asphyxia deaths are associated with an increase in the number of mast cell (MC)-derived tryptase enzymes in the blood suggests that HIF1-α production may be correlated with MC activation in hypoxic conditions. This hypothesis prompted us to investigate the possible role of pulmonary MC in acute asphyxia deaths. Lung of 47 medico-legal autopsy cases (35 asphyxia/hypoxia deaths, 11 controls, and 1 anaphylactic death) were processed by IHC analysis using anti-CD117 (c-Kit) antibody to investigate peri-airway and perivascular MC together with their counts and features. Results showed a significant increase in peri-vascular c-kit+ MC in some asphyxia deaths, such as hanging, strangulation, and aspiration deaths. A strong activation of MC in peri-airway and peri-vascular areas was also observed in lung samples from the anaphylaxis case, which was used as a positive control.
Our study points to the potential role of MC in hypoxia and suggests that an evaluation of MC in the lungs may be a
useful parameter when forensic pathologists are required to make a differential diagnosis between acute asphyxia deaths and other kinds of death
Intraoral scanners in personal identification of corpses: usefulness and reliability of 3d technologies in modern forensic dentistry
Aims: This study aims to verify the applicability of modern dental technologies and their related principles of use to the forensic sciences in the field of personal identification. Background: Personal identification has always had a major role in many legal and administrative actions regarding both living and death beings. The techniques used are much less advanced than the technologies potentially available. Objective: Modern technologies, available to the daily dental clinic practice, as intraoral scanners, combined in particular to the specialist skill in orthodontics, can help redefine the methods of personal identification according to the levels of accuracy, trueness and feasibility greater than those applied in traditional forensic dentistry. Methods: 23 corpses (12F;11M) have been selected for intraoral scanning with the Carestream 3500® digital device. The superimposition of initial and late digital models, digital models and radiographs (orthopantomography and full mouth periapical films) has been evaluated to verify the stability of some structures as palatal rugae after death and to assess intraoral scanning as a successful comparative method between antemortem and postmortem records (digital models or radiographs). Obtained results were subjected to statistical analysis by the t-student test and X-square test with Yates correction (p<0.05). Results: After death, palatal rugae significatively change especially in mouths with restorations/prosthesis/missing teeth. The percentages of correct matching between scans and radiographs are very higher (up 90%; p<0.05). Conclusion: This study has been set up to study and develop new, reliable and fast methods of personal identification that can surpass many of the issues seen with the other techniques by a modern rugoscopy, a modern radiographic-digital comparison and virtual oral autopsy
Preliminary study on the use of the 137 Cs method for soil erosion investigation in the pampean region of Argentina
Soil erosion is the most important degradation process in A rgentine. According to the estimation of 4.9 millon ha in Pampa Ondulada Region, 1.600.000 ha (36% of agricultural soils) are affected by the erosion. Field measurements of soil erosion and sediment deposition using classical techniques are difficult, time consuming, and expensive but indispensable to feed the prediction models for conservation practices design and fa rm planning.
Many authors have reported that the measurement of fallout nuclides is useful tool to characterize geomorphical processes. Walling and He proposes models for conve rting 137Cs depletion/enrichment amounts to net soil loss/deposition. These models are based in the comparison between a reference 137Cs profile in a long term undisturbed site (control site) and the 137Cs profiles in the suspected eroded or deposited sites in the landscape.
The aim of this study is to provide a complete and well representative set of data on the erosion intensity in topographical conditions for the Pampa Ondulada Region in A rgentine by using a tracer technique. The study area is a small watershed (about 300 ha), located in Arroyo del Tala medium basin, within Partido of San Pedro in Buenos Aires Province, Argentine. This paper presents a group of results from a detailed investigation of erosion and sediment delivery, within a 49 ha cultivated field study site in this watershed. The base of sampling strategy is the grid approach. A reference inventory, representing the local fallout input, was searched for at a site experiencing neither erosion nor deposition.
Radiocaesium analyses were made at the Nuclear Regulatory Authority Laboratory by a GE Hp detector. To make an interpretation of 137Cs distribution of soil losses and sedimentation, the Mass Balance Model 2 was used (Walling and He 1997). The erosion/deposition rates from Mass Balance Model 2 are in the range of 0 to -30 t·ha-1·y-1 for erosion, and 0 to 19 t·ha-1·y-1 for deposition, and these values matched well, with the rates of erosion obtained by classical methods. The 137Cs spatial and depth distribution are showed in a map, and enabled to study the relationship of the erosion to the topography, and a good discrimination in subclasses within moderate erosion class and sedimentation class
Volatile lipophilic substances management in case of fatal sniffing.
Death due to inhalation of aliphatic hydrocarbons such as butane and propane is a particularly serious problem worldwide, resulting in several fatal cases of sniffing these volatile substances in order to "get high". Despite the number of cases published, there is not a unique approach to case management of fatal sniffing. In this paper we illustrate the volatile lipophilic substances management in a case of a prisoner died after sniffing a butane-propane gas mixture from prefilled camping stove gas canisters, discussing the comprehensive approach of the crime scene, the autopsy, histology and toxicology. A large set of accurate values of both butane and propane was obtained by gas chromatography-mass spectrometry analyzing the following post-mortem biological samples: peripheral blood, heart blood, vitreous humor, liver, lung, heart, brain/cerebral cortex, fat tissue, kidney, and allowed an in depth discussion about the cause of death. A key role is played by following the proper sampling approach during autopsy
Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5
<p>Abstract</p> <p>Background</p> <p>Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported.</p> <p>Methods</p> <p>Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation.</p> <p>Results</p> <p>In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (<it>P </it>< 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC).</p> <p>Conclusion</p> <p>Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms.</p
Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta
Amyloid precursor protein (APP) and its extracellular domain, soluble APP alpha (sAPPα) play important physiological and neuroprotective roles. However, rare forms of familial Alzheimer’s disease are associated with mutations in APP that increase toxic amyloidogenic cleavage of APP and produce amyloid beta (Aβ) at the expense of sAPPα and other non-amyloidogenic fragments. Although mitochondrial dysfunction has become an established hallmark of neurotoxicity, the link between Aβ and mitochondrial function is unclear. In this study we investigated the effects of increased levels of neuronal APP or Aβ on mitochondrial metabolism and gene expression, in human SH-SY5Y neuroblastoma cells. Increased non-amyloidogenic processing of APP, but not Aβ, profoundly decreased respiration and enhanced glycolysis, while mitochondrial DNA (mtDNA) transcripts were decreased, without detrimental effects to cell growth. These effects cannot be ascribed to Aβ toxicity, since higher levels of endogenous Aβ in our models do not cause oxidative phosphorylation (OXPHOS) perturbations. Similarly, chemical inhibition of β-secretase decreased mitochondrial respiration, suggesting that non-amyloidogenic processing of APP may be responsible for mitochondrial changes. Our results have two important implications, the need for caution in the interpretation of mitochondrial perturbations in models where APP is overexpressed, and a potential role of sAPPα or other non-amyloid APP fragments as acute modulators of mitochondrial metabolism
Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus
Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI
Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice
BACKGROUND: Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain( NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. METHODS: BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post- infection (wpi) by Western blotting and RT-PCR. RESULTS: Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. CONCLUSION: Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AbetaPP and phosphorylated tau emerged in the brain. DOI: 10.1186/1471-2334-8-8
CATMoS: Collaborative Acute Toxicity Modeling Suite.
BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50≤50mg/kg)], and nontoxic chemicals (LD50>2,000mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495
- …