84 research outputs found

    Towards a standardization of biomethane potential tests

    Get PDF
    8 PáginasProduction of biogas from different organic materials is a most interesting source of renewable energy. The biomethane potential (BMP) of these materials has to be determined to get insight in design parameters for anaerobic digesters. A workshop was held in June 2015 in Leysin Switzerland to agree on common solutions to the conundrum of inconsistent BMP test results. A discussion covers actions and criteria that are considered compulsory ito accept and validate a BMP test result; and recommendations concerning the inoculum substrate test setup and data analysis and reporting ito obtain test results that can be validated and reproduced.The workshop in Leysin, Switzerland, has been financed by the Swiss Federal Office for Energy, and co-sponsored by Bioprocess Control Sweden AB, Lund, Sweden. The authors thank Alexandra Maria Murray for editing the English

    Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection

    Get PDF
    Microbiota provide their hosts with a range of beneficial services, including defense from external pathogens. However, host-associated microbial communities themselves can act as a source of opportunistic pathogens depending on the environment. Marine poikilotherms and their microbiota are strongly influenced by temperature, but experimental studies exploring how temperature affects the interactions between both parties are rare. To assess the effects of temperature, temperature stress and infection on diversity, composition and dynamics of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an experiment in a fully-crossed, three-factorial design, in which the temperature acclimated oysters (8 or 22 °C) were exposed to temperature stress and to experimental challenge with a virulent Vibrio sp. Strain. We monitored oyster survival and repeatedly collected hemolymph of dead and alive animals to determine the microbiome composition by 16s rRNA gene amplicon pyrosequencing. We found that the microbial dynamics and composition of communities in healthy animals (including infection survivors) were significantly affected by temperature and temperature stress, but not by infection. The response was mediated by changes in the incidence and abundance of operational taxonomic units (OTUs) and accompanied by little change at higher taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and moribund oysters, on the contrary, displayed signs of community structure disruption, characterized by very low diversity and proliferation of few OTUs. We can therefore link short-term responses of host-associated microbial communities to abiotic and biotic factors and assess the potential feedback between microbiota dynamics and host survival during disease

    Effect of Ultrasonic, Microwave and Combined Microwave–Ultrasonic Pretreatment of Municipal Sludge on Anaerobic Digester Performance

    No full text
    Anaerobic digestion is one of the most effective means for the stabilisation of sludge. However, it has a very slow rate-limiting hydrolysis phase which is attributed to the low biodegradability of cell walls and the presence of extracellular biopolymers. This study aims at investigating the effect of ultrasonic, microwave and combined microwave–ultrasonic treatment on biogas production, solids removal and dewaterability of anaerobically digested sludge. A comparison was made between the three pretreatment techniques conducting the digestion tests under similar conditions on the same synthetic sludge sample inoculated by digested sewage sludge. The experimental results depict that the combined microwave–ultrasonic treatment (2,450-MHz, 800-W and 3-min microwave treatment followed by 0.4-W/ml and 10-min ultrasonication) resulted in better digester performance than ultrasonic or microwave treatment. Mesophilic digestion of combined microwave–ultrasonic-pretreated sludge produced a significantly higher amount of methane (147 ml) after a sludge retention time of 17 days, whereas the ultrasonic- and microwave-treated sludge samples produced 30 and 16 ml of methane, respectively. The combined microwave–ultrasonic treatment resulted in total solids reduction of 56.8 % and volatile solid removal of 66.8 %. Furthermore, this combined treatment improved dewaterability of the digested sludge by reducing the capillary suction time (CST) down to 92 s, as compared to CST of 331 s for microwave-treated and 285 s for ultrasonically treated digested sludge samples. Optimisation tests were also carried out to determine the best combination

    Electro-Oxidation Method Applied for Activated Sludge Treatment: Experiment and Simulation Based on Supervised Machine Learning Methods

    Get PDF
    In the present research, an electro-oxidation method was applied to decrease the organic compounds and remove the available micro-organisms in activated sludge of the sewage. Within this method, low cost electrodes were used, including stainless steel, graphite, and Pb/PbO2, and the operating parameters (pH, current density, and operating time) were experimentally optimized. In order to determine sludge stabilization (removal of organic matters and microorganisms), the decrease of parameters like chemical oxygen demand, the increase of electroconductivity and the total dissolved solids, total coli form, and fecal coli form were investigated. Two machine learning techniques (artificial neural networks and support vector machines) were applied comparatively for prediction of the process efficiency. Accurate results were obtained by simulation, in agreement with experimental data
    • …
    corecore