736 research outputs found
Tuning magnetic frustration on the diamond lattice of the A-site magnetic spinels CoAlGaO: Lattice expansion and site disorder
The spinels CoBO with magnetic Co ions on the diamond lattice
A site can be frustrated because of competing near-neighbor () and
next-near neighbor () interactions. Here we describe attempts to tune the
relative strengths of these interactions by substitution on the non-magnetic
B-site. The system we employ is CoAlGaO, where Al is
systematically replaced by the larger Ga, ostensibly on the B site. As
expected, Ga substitution expands the lattice, resulting in Co atoms on the
A-site being pushed further from one other and thereby weakening magnetic
interactions. In addition, Ga distributes between the B and the A site in a
concentration dependent manner displacing an increasing amount of Co from the A
site with increasing . This increased inversion, which is confirmed by
neutron diffraction studies carried out at room temperature, affects magnetic
ordering very significantly, and changes the nature of the ground state.
Modeling of the magnetic coupling illustrates the complexity that arises from
the cation site disorder.Comment: 9 pages, 10 figure
Fluorescent oxide nanoparticles adapted to active tips for near-field optics
We present a new kind of fluorescent oxide nanoparticles with properties well
suited to active-tip based near-field optics. These particles with an average
diameter in the range 5-10 nm are produced by Low Energy Cluster Beam
Deposition (LECBD) from a YAG:Ce3+ target. They are studied by transmission
electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), classical
photoluminescence, cathodoluminescence and near-field scanning optical
microscopy (NSOM). Particles of extreme photo-stability as small as 10 nm in
size are observed. These emitters are validated as building blocks of active
NSOM tips by coating a standard optical tip with a 10 nm thick layer of
YAG:Ce3+ particles directly in the LECBD reactor and by subsequently performing
NSOM imaging of test surfaces.Comment: Changes made following Referee's comments; added references; one
added figure. See story on this article at:
http://nanotechweb.org/cws/article/tech/3606
FragmentStore—a comprehensive database of fragments linking metabolites, toxic molecules and drugs
Consideration of biomolecules in terms of their molecular building blocks provides valuable new information regarding their synthesis, degradation and similarity. Here, we present the FragmentStore, a resource for the comparison of fragments found in metabolites, drugs or toxic compounds. Starting from 13 000 metabolites, 16 000 drugs and 2200 toxic compounds we generated 35 000 different building blocks (fragments), which are not only relevant to their biosynthesis and degradation but also provide important information regarding side-effects and toxicity. The FragmentStore provides a variety of search options such as 2D structure, molecular weight, rotatable bonds, etc. Various analysis tools have been implemented including the calculation of amino acid preferences of fragments’ binding sites, classification of fragments based on the enzyme classification class of the enzyme(s) they bind to and small molecule library generation via a fragment-assembler tool. Using the FragmentStore, it is now possible to identify the common fragments of different classes of molecules and generate hypotheses about the effects of such intersections. For instance, the co-occurrence of fragments in different drugs may indicate similar targets and possible off-target interactions whereas the co-occurrence of fragments in a drug and a toxic compound/metabolite could be indicative of side-effects. The database is publicly available at: http://bioinformatics.charite.de/fragment_store
Temperature dependent characteristics of La2O2S: Ln [Ln = Eu,Tb] with various Ln concentrations over 5-60 ºC
This research is aimed at developing an optical sensor for remotely measuring human skin temperature in electromagnetically hostile environments, such as within a magnetic resonance imaging (MRI) scanner. In this feasibility study, various concentrations of europium doped lanthanum oxysulphide (La2O2S: Eu- 0.1-15 mol % (m/o)) and terbium doped lanthanum oxysulphide (La2O2S: Tb - 0.005-50 m/o) have been investigated in terms of crystallinity, photoluminescent (PL) spectral and decay time characteristics. For both phosphors, X-ray diffraction (XRD) has shown that as dopancy increases, the (100) and (002) reflections merge and there is a reduction in the c-axis parameter as well as the crystallite size. Photoluminescent characterisation (337 nm excitation) has also shown a dependency to dopant concentration through variance of peak intensity. Temperature dependent decay time measurements were carried out over a low temperature range of 5 to 60 °C. Optimum brightness of these temperature dependent lines is achieved at concentrations of 1 and 10 m/o for La2O2S: Eu and La2O2S: Tb respectively. However, optimum temperature dependency is achieved at lower concentration for La2O2S: Eu, specifically at 0.1 m/o. In comparison to conventional phosphor temperature dependent characteristic, La2O2S: Tb showed an increase in decay time with respect to temperature for concentrations above 2 m/o
Structural and Luminescence Properties of Silica-Based Hybrids Containing New Silylated-Diketonato Europium(III) Complex
A new betadiketonate ligand displaying a trimethoxysilyl group as grafting function and a diketone moiety as complexing site (TTA-Si = 4,4,4-trifluoro-2-(3-trimethoxysilyl)propyl)-1-3-butanedione (C4H3S)COCH[(CH2)3Si(OCH3)3]COCF3) and its highly luminescent europium(III) complex [Eu(TTA-Si)3] have been synthesized and fully characterized. Luminescent silica-based hybrids have been prepared as well with this new complex grafted on the surface of dense silica nanoparticles (28 (+/-3 nm) or on mesoporous
silica particles. The covalent bonding of Eu(TTA-Si)3 inside the core of uniform silica
nanoparticles (40 (+/- 5 nm) was also achieved. Luminescence properties are discussed in relation to the europium chemical environment involved in each of the three hybrids. The general methodology proposed allowed high grafting ratios and overcame chelate release and tendency to agglomeration, and it could be applied to any silica matrix (in the core or at the surface, nanosized or not, dense or mesoporous) and therefore numerous applications such as luminescent markers and luminophors could be foreseen
Magnetic phase evolution in the spinel compounds ZnCoCrO
We present the magnetic properties of complete solid solutions of
ZnCrO and CoCrO: two well-studied oxide spinels with very
different magnetic ground states. ZnCrO, with non-magnetic
cations occupying the A site and magnetic cations on the B site, is a
highly frustrated antiferromagnet. CoCrO, with magnetic cations
(three unpaired electrons) on the A site as well, exhibits both N\'eel
ferrimagnetism as well as commensurate and incommensurate non-collinear
magnetic order. More recently, CoCrO has been studied extensively for
its polar behavior which arises from conical magnetic ordering. Gradually
introducing magnetism on the A site of ZnCrO results in a transition
from frustrated antiferromagnetism to glassy magnetism at low concentrations of
Co, and eventually to ferrimagnetic and conical ground states at higher
concentrations. Real-space Monte-Carlo simulations of the magnetic
susceptibility suggest that the first magnetic ordering transition and features
of the susceptibility across are captured by near-neighbor self- and
cross-couplings between the magnetic A and B atoms. We present as a part of
this study, a method for displaying the temperature dependence of magnetic
susceptibility in a manner which helps distinguish between compounds possessing
purely antiferromagnetic interactions from compounds where other kinds of
ordering are present.Comment: 10 pages, 5 figures, 1 tabl
Lattice Distortions Around a Tl+ Impurity in NaI:Tl+ and CsI:Tl+ Scintillators. An Ab Initio Study Involving Large Active Clusters
Ab initio Perturbed Ion cluster-in-the-lattice calculations of the impurity
centers NaI:Tl+ and CsI:Tl+ are pressented. We study several active clusters of
increasing complexity and show that the lattice relaxation around the Tl+
impurity implies the concerted movement of several shells of neighbors. The
results also reveal the importance of considering a set of ions that can
respond to the geometrical displacements of the inner shells by adapting
selfconsistently their wave functions. Comparison with other calculations
involving comparatively small active clusters serves to assert the significance
of our conclusions. Contact with experiment is made by calculating absorption
energies. These are in excellent agreement with the experimental data for the
most realistic active clusters considered.Comment: 7 pages plus 6 postscript figures, LaTeX. Submmited to Phys, Rev.
Calculation of The Band Gap Energy and Study of Cross Luminescence in Alkaline-Earth Dihalide Crystals
The band gap energy as well as the possibility of cross luminescence
processes in alkaline-earth dihalide crystals have been calculated using the ab
initio Perturbed-Ion (PI) model. The gap is calculated in several ways: as a
difference between one-electron energy eigenvalues and as a difference between
total energies of appropriate electronic states of the crystal, both at the HF
level and with inclusion of Coulomb correlation effects. In order to study the
possibility of ocurrence of cross luminescence in these materials, the energy
difference between the valence band and the upmost core band for some
representative crystals has been calculated. Both calculated band gap energies
and cross luminescence predictions compare very well with the available
experimental results.Comment: LaTeX file containing 8 pages plus 1 postscript figure. Final version
accepted for publication in The Journal of the Physical Society of Japan. It
contains a more complete list of references, as well as a more detailed
comparison with previous theoretical investigations on the subjec
- …