409 research outputs found

    Photopolymerizable platelet lysate hydrogels for customizable 3D cell culture platforms

    Get PDF
    3D cell culture platforms have emerged as a setting that resembles in vivo environments replacing the traditional 2D platforms. Over the recent years, an extensive effort has been made on the development of more physiologically relevant 3D cell culture platforms. Extracellular matrix-based materials have been reported as a bioactive and biocompatible support for cell culture. For example, human plasma derivatives have been extensively used in cell culture. Despite all the promising results, in most cases these types of materials have poor mechanical properties and poor stability in vitro. Here plasma-based hydrogels with increased stability are proposed. Platelet lysates are modified by addition of methacryloyl groups (PLMA) that polymerize in controlled geometries upon UV light exposure. The hydrogels could also generate porous scaffolds after lyophilization. The results show that PLMA materials have increased mechanical properties that can be easily adjusted by changing PLMA concentration or modification degree. Cells readily adhere, proliferate, and migrate, exhibiting high viability when encapsulated in PLMA hydrogels. The innovation potential of PLMA materials is based on the fact that it is a complete xeno-free solution for human cell culture, thus an effective alternative to the current gold standards for 3D cell culture based on animal products.publishe

    Challenges in oncology career: are we closing the gender gap? Results of the new ESMO Women for Oncology Committee survey

    Get PDF
    Discrimination; Gender equity; OncologyDiscriminació; Equitat de gènere; OncologiaDiscriminación; Equidad de género; OncologíaBackground Following a European Society for Medical Oncology Women for Oncology (ESMO W4O) survey in 2016 showing severe under-representation of female oncologists in leadership roles, ESMO launched a series of initiatives to address obstacles to gender equity. A follow-up survey in October 2021 investigated progress achieved. Materials and methods The W4O questionnaire 2021 expanded on the 2016 survey, with additional questions on the impact of ethnicity, sexual orientation and religion on career development. Results were analysed according to respondent gender and age. Results The survey sample was larger than in 2016 (n = 1473 versus 482), especially among men. Significantly fewer respondents had managerial or leadership roles than in 2016 (31.8% versus 51.7%). Lack of leadership development for women and unconscious bias were considered more important in 2021 than in 2016. In 2021, more people reported harassment in the workplace than in 2016 (50.3% versus 41.0%). In 2021, ethnicity, sexual orientation and religion were considered to have little or no impact on professional career opportunities, salary setting or related potential pay gap. However, gender had a significant or major impact on career development (25.5% of respondents), especially in respondents ≤40 years of age and women. As in 2016, highest ranked initiatives to foster workplace equity were promotion of work–life balance, development and leadership training and flexible working. Significantly more 2021 respondents (mainly women) supported the need for culture and gender equity education at work than in 2016. Conclusions Gender remains a major barrier to career progression in oncology and, although some obstacles may have been reduced since 2016, we are a long way from closing the gender gap. Increased reporting of discrimination and inappropriate behaviour in the workplace is a major, priority concern. The W4O 2021 survey findings provide new evidence and highlight the areas for future ESMO interventions to support equity and diversity in oncology career development.This work was supported by the European Society for Medical Oncology (no grant number)

    Dietary cholesterol promotes repair of demyelinated lesions in the adult brain

    Get PDF
    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes

    Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases.

    Get PDF
    OBJECTIVES: To evaluate the prognostic relevance of temporal muscle thickness (TMT) in brain metastasis patients. METHODS: We retrospectively analysed TMT on magnetic resonance (MR) images at diagnosis of brain metastasis in two independent cohorts of 188 breast cancer (BC) and 247 non-small cell lung cancer (NSCLC) patients (overall: 435 patients). RESULTS: Survival analysis using a Cox regression model showed a reduced risk of death by 19% with every additional millimetre of baseline TMT in the BC cohort and by 24% in the NSCLC cohort. Multivariate analysis included TMT and diagnosis-specific graded prognostic assessment (DS-GPA) as covariates in the BC cohort (TMT: HR 0.791/CI [0.703-0.889]/p < 0.001; DS-GPA: HR 1.433/CI [1.160-1.771]/p = 0.001), and TMT, gender and DS-GPA in the NSCLC cohort (TMT: HR 0.710/CI [0.646-0.780]/p < 0.001; gender: HR 0.516/CI [0.387-0.687]/p < 0.001; DS-GPA: HR 1.205/CI [1.018-1.426]/p = 0.030). CONCLUSION: TMT is easily and reproducibly assessable on routine MR images and is an independent predictor of survival in patients with newly diagnosed brain metastasis from BC and NSCLC. TMT may help to better define frail patient populations and thus facilitate patient selection for therapeutic measures or clinical trials. Further prospective studies are needed to correlate TMT with other clinical frailty parameters of patients. KEY POINTS: • TMT has an independent prognostic relevance in brain metastasis patients. • It is an easily and reproducibly parameter assessable on routine cranial MRI. • This parameter may aid in patient selection and stratification in clinical trials. • TMT may serve as surrogate marker for sarcopenia

    Direct image to subtype prediction for brain tumors using deep learning

    Get PDF
    BACKGROUND: Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine histopathology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, the classification of brain tumors integrates both histopathological and molecular information. We hypothesize that DL can predict molecular alterations as well as WHO subtyping of brain tumors from hematoxylin and eosin-stained histopathology slides. METHODS: We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, comprising N = 2845 patients. RESULTS: We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q codeletion, were predictable from histology with an area under the receiver operating characteristic curve (AUROC) of 0.95, 0.90, and 0.80 in the training cohort, respectively. These findings were upheld in external validation cohorts with AUROCs of 0.90, 0.79, and 0.87 for prediction of IDH, ATRX, and 1p19q codeletion, respectively. CONCLUSIONS: In the future, such DL-based implementations could ease diagnostic workflows, particularly for situations in which advanced molecular testing is not readily available

    Managerial power in the German model: the case of Bertelsmann and the antecedents of neoliberalism

    Get PDF
    Our article extends the research on authoritarian neoliberalism to Germany, through a history of the Bertelsmann media corporation – sponsor and namesake of Germany’s most influential neoliberal think-tank. Our article makes three conceptual moves. Firstly, we argue that conceptualizing German neoliberalism in terms of an ‘ordoliberal paradigm’ is of limited use in explaining the rise and fall of Germany’s distinctive socio-economic model (Modell Deutschland). Instead, we locate the origins of authoritarian tendencies in the corporate power exercised by managers rather than in the power of state-backed markets imagined by ordoliberals. Secondly, we focus on the managerial innovations of Bertelsmann as a key actor enmeshed with Modell Deutschland. We show that the adaptation of business management practices of an endogenous ‘Cologne School’ empowered Bertelsmann’s postwar managers to overcome existential crises and financial constraints despite being excluded from Germany’s corporate support network. Thirdly, we argue that their further development in the 1970s also enabled Bertelsmann to curtail and circumvent the forms of labour representation associated with Modell Deutschland. Inspired by cybernetic management theories that it used to limit and control rather than revive market competition among its workforce, Bertelsmann began to act and think outside the postwar settlement between capital and labour before the settlement’s hotly-debated demise since the 1990s

    Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma

    Get PDF
    Background Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. Methods We performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. Results Diffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. Conclusion TILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastom

    Anesthesia triggers drug delivery to experimental glioma in mice by hijacking caveolar transport

    Get PDF
    Abstract Background: Pharmaceutical intervention in the CNS is hampered by the shielding function of the blood-brain barrier (BBB). To induce clinical anesthesia, general anesthetics such as isoflurane readily penetrate the BBB. Here, we investigated whether isoflurane can be utilized for therapeutic drug delivery. Methods: Barrier function in primary endothelial cells was evaluated by transepithelial/transendothelial electrical resistance, and nanoscale STED and SRRF microscopy. In mice, BBB permeability was quantified by extravasation of several fluorescent tracers. Mouse models including the GL261 glioma model were evaluated by MRI, immunohistochemistry, electron microscopy, western blot, and expression analysis. Results: Isoflurane enhances BBB permeability in a time- and concentration-dependent manner. We demonstrate that, mechanistically, isoflurane disturbs the organization of membrane lipid nanodomains and triggers caveolar transport in brain endothelial cells. BBB tightness re-establishes directly after termination of anesthesia, providing a defined window for drug delivery. In a therapeutic glioblastoma trial in mice, simultaneous exposure to isoflurane and cytotoxic agent improves efficacy of chemotherapy. Conclusions: Combination therapy, involving isoflurane-mediated BBB permeation with drug administration has far-reaching therapeutic implications for CNS malignancies
    corecore