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Key Points 

●    Deep Learning can predict both molecular alteration status and subtype of diffuse adult-type gliomas 

directly from histopathology whole slide images. 

●    This is the first study to predict subtype and molecular status according to the 2021 WHO CNS 5th 

edition. 

Importance of the Study 

The 2021 update to the World Health Organisation (WHO) classification system for central nervous system 

(CNS) tumors places further emphasis on molecular characterisation in the diagnosis of adult-type diffuse 

gliomas. However, molecular assays are not necessarily available in all healthcare systems. Deep Learning 

(DL) offers an alternative approach for predicting molecular status directly from digitized histopathology 

slides. This study demonstrates that DL can accurately predict not only the subtype of glioma, but also the 

status of individual molecular alterations. To our knowledge, this is the first study predicting clinically-

relevant markers according to the WHO 5th edition. This work provides further evidence supporting the 

use of digital workflows to support decision-making in clinical medicine. 
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Abstract 

Background. Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine 

histopathology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, 

the classification of brain tumors integrates both histopathological and molecular information. We 

hypothesize that DL can predict molecular alterations as well as WHO subtyping of brain tumors from 

hematoxylin and eosin-stained histopathology slides. 

Methods. We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, 

comprising N=2,845 patients. 

Results. We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q co-

deletion, were predictable from histology with an area under the receiver operating characteristic curve 

(AUROC) of 0.95, 0.90 and 0.80 in the training cohort respectively. These findings were upheld in external 

validation cohorts with AUROCs of 0.90, 0.79 and 0.87 for prediction of IDH, ATRX and 1p19q co-deletion 

respectively. 

Conclusions. In the future, such DL-based implementations could ease diagnostic workflows, particularly 

for situations in which advanced molecular testing is not readily available. 

 Keywords: Adult-type diffuse gliomas, Deep Learning, subtype, molecular signatures, IDH. 
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Introduction 

Diffuse gliomas are the most frequent primary malignant brain tumors in adults and broad demographic 

shifts mean that their incidence is expected to increase1,2. Due to the aggressive nature, infiltrative 

growth and central location, these tumors generally have a poor prognosis. Clinical outcome for these 

entities largely depends on subtype, the diagnosis of which has historically been based on histological 

assessment1,2. 

In 2021, the World Health Organization (WHO) released the 5th edition of diagnostic criteria for adult-

type diffuse gliomas. These criteria are based on a combination of molecular alterations and 

histopathological assessment, which determines WHO CNS subtype and grade3. In addition, 

methylation profiles can be used to define the glioma diagnosis2. 

Based on their molecular profile, a significant proportion of adult-type gliomas can be subtyped by IDH 

(IDH1 or IDH2) and ATRX mutation status, as well as 1p19q co-deletion. Glioblastomas CNS WHO 4 

are currently defined by the absence of IDH- and H3 mutations and occurrence of at least one of the 

following histopathological (microvascular proliferations, necrosis) or molecular (chromosome +7/-10 

signature, EGFR amplification, TERT promoter mutation) alterations. IDH-mutant gliomas are 

subclassified into astrocytomas or oligodendrogliomas. The classification of IDH-mutant 

oligodendrogliomas CNS WHO 2/3 are defined by demonstration of a combined whole arm deletion of 

chromosomes 1p and 19q. Immunohistochemically retained nuclear ATRX expression as a surrogate of 

ATRX- wildtype- status is a very strong correlate for 1p19q- codeletion- status in IDH-mutant gliomas2. 

IDH-mutant astrocytomas CNS WHO 2/3/4 are molecularly defined by retained 1p19q chromosomes 

and the presence of ATRX-mutation, or its immunohistochemical surrogate of nuclear ATRX- staining- 

loss. The grading of IDH-mutant astrocytomas also relies on a combination of histomorphological as 
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well as molecular traits: the presence of CDKN2A/B homozygous deletion and/or necrosis and/or 

microvascular proliferation defines a CNS WHO grade 4 lesion in IDH-mutant astrocytomas2. 

This evolution in the diagnostic approach represents a further shift away from the traditional 

histopathological process where pathologists typically assign subtypes based on specific tumor features, 

including morphology. The integration of genetic alterations into the diagnostic process reflects 

improved understanding of these tumors allowing for greater diagnostic precision. However, the 

necessity for next molecular assessment and in some cases, methylation array profiling, also makes the 

process more expensive4. These diagnostic requirements are further confounded by the fact that many 

advanced genetic tests are not available in all healthcare systems. For a fully integrated diagnosis, 

multiple different assays may be required to characterize different molecular features. This may further 

drive up costs associated with molecular testing, serving to widening the already pronounced inequities 

in precision medicine5. Furthermore, the requirement for multiple tests could delay treatment by up to 

several weeks, with adverse sequelae for the patient6. 

An increasing body of evidence indicates that Deep Learning (DL) techniques are able to predict the 

phenotypes linked to individual molecular alterations directly from routine hematoxylin and eosin 

(H&E) stained histopathology slides7 This has the potential to accelerate diagnostic workflows and 

reduce the costs associated with molecular testing8. These studies have shown that clinically relevant 

features, such as biomarkers and subtype, can be predicted directly from histopathology slides for many 

tumor types7,9,10, including in brain tumors11,12. DL is a machine learning (ML) method from the field of 

artificial intelligence (AI) and is a common and powerful way to extract quantitative information from 

image data13. A typical DL workflow involves three main stages; pre-processing of the data, training 

and testing of an algorithm and assessment of model performance through interpretation of statistical 

results13. 
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To assess the current status of DL research in diagnostic neuropathology, we performed a systematic 

literature review (Suppl. Fig 1 and 2). DL applications in brain tumors have mostly focused on 

classification tasks. The most common classification tasks consisted of molecular status prediction 

(n=13) followed by grade (n=10) and subtype prediction (n=4). This demonstrates that brain tumors 

remain understudied in the field of computational pathology. This is particularly evident when compared 

to breast or colorectal cancer, which have been investigated in hundreds of computational pathology 

studies7. The brain-cancer-related studies identified via literature review were generally performed on 

small datasets11,14–16, without external validation17–19, or used networks that were not pre-trained on 

histopathology images18,20–22. This demonstrates a pressing need to address brain tumor research using 

larger, more heterogeneous cohorts employing up-to-date methods. To our knowledge, there are no 

previously published studies attempting to predict subtype in adult-type diffuse gliomas on the basis of 

the WHO 2021 5th edition. 

To this end, we collected and analyzed three independent datasets of digitized routine histological whole 

slide images (WSI) with the primary aims of predicting genetic alterations and differentiating brain 

tumor subtypes by using DL. 

Materials and Methods 

Ethics Statement 

This study was performed in accordance with the Declaration of Helsinki. The research involved 

analysis of anonymized archival digital images of human tissue. Ethical approval was obtained at 

collaborating centers prior to collection and pseudonymization. Data was obtained from University 

College London as part of the UK Brain Archive Information Network (BRAIN UK) which is funded 

by the Medical Research Council and Brain Tumour Research. BRAIN UK reference number: 22-011 
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– Artificial intelligence-based reconstruction of the WHO 2021 diagnostic algorithm for adult-type 

diffuse gliomas. The overall analysis was approved by the Ethics commission of the Medical Faculty of 

Technical University of Dresden (BO-EK-444102022). The STARD 2015 checklist can be found in 

Suppl. Tab. 2. 

 

Cohort Description 

The first cohort was obtained from University College London (UCL) via Brain UK (REF:22/011). This 

cohort consisted of n=1882 digitized H&E histopathology WSIs from n=1877 patients with 

corresponding clinicopathological and molecular data. These are non-consecutive cases collected from 

routine diagnostic work between 2011 and 2019. The dataset, curated from 40 sites across seven 

countries, encompasses both typical clinical cases and a small number of rare entities. All cases in which 

a diagnosis of an adult-type diffuse glioma was made were included in our study. These cases had an 

integrated molecular diagnosis according to WHO 2021, updated from a diagnosis according to WHO 

2016, i.e. all cases were retrospectively assessed to comply with the CNS WHO 2021 classification. 

The second cohort was derived from The Cancer Genome Atlas (TCGA, n=864) network 

www.portal.gdc.gov for the tumor entities of Low Grade Glioma (LGG, n=493) and Glioblastoma (GBM, 

n=371). The dataset is composed of cases contributed from 38 sites across seven countries. All cases in 

which a diagnosis of an adult-type diffuse glioma or a relevant genetic alteration was made, were included 

in our study. Digitized histopathological WSIs with matching clinical-pathological and molecular data were 

obtained from www.cbioportal.org. Classification for this cohort was made according to WHO 2016. 

Molecular alteration data available for this cohort were used to update the subtype diagnosis to comply with 

WHO 2021, with assistance from an expert neuropathologist (SB). The third cohort was the Clinical 
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Proteomic Tumor Analysis Consortium (CPTAC, n=99) from 

https://www.cancerimagingarchive.net/collections/. All cases that were tested for CDKN2A/B homozygous 

deletion were included in our study. Matching clinicopathological and molecular data were downloaded 

from www.cbioportal.org. Data was obtained from these online sources as of 13th March 2022. 

Information on the diagnostic process was sourced from WHO via their website 

https://tumourclassification.iarc.who.int/login. An overview of the neuropathological approach to diffuse 

adult-type gliomas can be found in Figure 1A-B. The diagnostic criteria informed which molecular data 

we collected for this study. Full details of the data collected and data preprocessing can be found in 

Supplementary Methods. An overview of the subtype data available in the UCL and TCGA cohorts can 

be found in Figure 1C-D. Further cohort data and consort charts can be found in Table 1 and Suppl. Fig. 

3 respectively. 

Deep Learning Methods 

We have previously established10,23 and validated24,25 a Deep Learning pipeline to predict molecular 

alterations directly from histopathology images, including neuropathology26. Here, we used an attention-

based multiple-instance learning approach (attMIL)26,27. Preprocessing included normalization28 and 

tessellation of WSIs before features were extracted from each tile29. The attMIL model makes 

predictions for a patient, based on a collection of tiles extracted from the patient’s slides. We call the 

aggregate of a patient’s features a bag, with the features itself being the bag’s instances. Since it is 

probable that not all of the instances have the same amount of information on the patient-level label, our 

model considers the entire bag at once. This enables it to consider information which may only be present 

in some of the instances while ignoring instances which contain little to no valuable information30. Fig 

1E gives an overview of our approach. Full details of these methods can be found in Supplementary 

Methods. Our preprocessing and pipeline scripts are freely available on github 

(https://github.com/KatherLab/marugoto). 
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Statistical Analysis 

Model performance was assessed with the Area Under the Receiver Operating Curve (AUROC), which is 

the primary statistical endpoint in most studies on AI-based medical image analysis 7. A bootstrap 95% 

confidence interval (CI) is also given to provide a measure on AUROC accuracy. Furthermore, we provide 

additional statistics including sensitivity, specificity, accuracy and precision.  

 

Data and Code Availability 

Access to the UCL data can be requested via the Brain UK study proposal platform at 

https://www.southampton.ac.uk/brainuk/index.page. Data from the TCGA and CPTAC cohorts can be 

accessed via the cBioPortal website (www.cbioportal.org, or literature: 31). 

Experimental Design 

Our aim was to use DL for subtype and molecular status prediction in adult-type diffuse gliomas 

according to the WHO 2021 5th edition. We investigated two approaches for subtype prediction: 

1.  Direct prediction: The tumor subtype is predicted from the WSI directly, according to both 2016 

and 2021 WHO approaches. The 2016 results were used as the baseline from which to compare the 

2021 results. 

2.  Sequential prediction: Each alteration in the diagnostic pathway is predicted separately. As a result 

of this output, the diagnostic pathway can be reproduced in a stepwise fashion, where the 

combination of alteration present and/or absent would then determine the subtype. 
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Both experimental approaches were run with internal cross-validation and external validation settings. 

The UCL cohort was chosen as the primary cohort for internal cross-validation and as a training set for 

external validation, due to having a larger number of patients and more balanced classes, with the 

exception of Ch+7/-10 and CDKN2A/B, as described in Suppl. Fig. 3. Details of the cohorts that were 

used for each experiment are listed in Table 2. 

Results 

Direct Prediction: 2016 and 2021 WHO Subtypes 

The 2016 WHO subtypes of brain tumors are based on molecular alteration status plus histomorphology. 

Deep Learning utilizes the characteristics of an image to inform classification decisions. Hence, a Deep 

Learning model should be able to predict these subtypes from images more readily than the other targets. 

Once established, these results can be used as a baseline from which to assess our further experiments. 

In the cross-validation setting, our approach yielded AUROCs of 0.89 (CI±0.02), 0.94 (CI±0.01) and 

0.93 (CI±0.01) for detection of astrocytoma, glioblastoma and oligodendroglioma, respectively 

(experiments 1-3 in Table 2 and Figure 2). We also predicted the 2016 subtype in an external validation 

setting. These experiments yielded AUROCs of 0.86 (CI±0.03), 0.91 (CI±0.03) and 0.86 (CI±0.04) for 

astrocytoma, glioblastoma and oligodendroglioma respectively (experiments 14-16 in Table 2 and 

Figure 2). 

We next investigated prediction of the 2021 subtype in an internal cross-validation and our approach 

was able to yield AUROCs of 0.92 (CI±0.03), 0.95 (CI±0.02) and 0.93 (CI±0.02) for astrocytoma, 

glioblastoma and oligodendroglioma, respectively (experiments 4-6 in Table 2 and Figure 2). 
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We then performed external validation, which gave AUROCs of 0.84 (CI±0.03), 0.90 (CI±0.02) and 

0.91 (CI±0.03) for prediction of astrocytoma, glioblastoma and oligodendroglioma, respectively 

(experiments 17-19 in Table 2 and Figure 2). 

When comparing these results to our baseline 2016 results, the performances were very similar. The 

external validation AUROCs for astrocytoma and glioblastoma (2016 vs 2021) were within 0.02 and the 

internal validation AUROCs were within 0.03 and 0.01 for astrocytoma and glioblastoma respectively 

(Figure 2 A&B, E&G). For oligodendroglioma, the AUROCs remained congruous across the internal 

validation experiments (2016 vs 2021), however, on external validation, the AUROC for the 2021 

experiment was 0.05 greater than in the 2016 experiment (Figure 2 C&G).  

Sequential Prediction: Molecular Alterations 

For our sequential prediction experiments, we began by predicting the core diagnostic molecular 

alterations (IDH, 1p19q and ATRX) in a cross-validation setting. Prediction of IDH within this cohort 

was highly successful giving an AUROC of 0.95 (CI±0.02), with ATRX and 1p19q giving AUROCs of 

0.91 (CI±0.03) and 0.80 (CI±0.03) respectively. For external validation of the core molecular alterations, 

results were similar to external validation for subtype prediction, with AUROCs of 0.90, (CI±0.02) 0.79 

(CI±0.04 and 0.87 (CI±0.03) for IDH, ATRX and 1p19q prediction respectively (experiments 7-9 and 

20-22 in Table 2 and Figure 3). 

Furthermore, we performed subgroup analyses to ascertain how well the model was able to predict 

molecular alterations within a subgroup composed of each tumor subtype. However, unfortunately our 

results did not find a strong link between any alteration and tumor subtype. ROC curves for these 

experiments can be found in Suppl. Fig. 3. 
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We also aimed to investigate prediction of four additional molecular alterations; TERT mutation, 

amplification of EGFR, CDKN2A/B homozygous deletion and chromosome trisomy 7 with monosomy 

10 (ch+7-10). For EGFR amplification, internal validation gave an AUROC 0.83 (CI±0.04) and external 

validation yielded an AUROCs of 0.85 (CI±0.03) (experiments 11 & 24 in Table 2 and G in Fig 3). 

Unfortunately, we were unable to fully assess predictability of TERT mutation, CDKN2A/B homozygous 

deletion and ch+7/-10 due to low prevalence of cases in our datasets. Preliminary results using the 

available data for these alterations are available in Suppl. Fig. 4. 

Comparison of Approaches: Direct versus Sequential 

In order to compare our two approaches, we stacked the external validation predictions for the three core 

alterations IDH, ATRX and 1p19q to determine a final subtype prediction according to WHO CNS 2021. 

We then performed statistical analysis of these stacked predictions and compared them to statistical analysis 

of the external validation results for the 2021 direct prediction experiment (Fig. 4).  Overall, the results for 

the sequential prediction were superior to the direct prediction in all metrics (Fig. 4), except for precision 

(0.92 in sequential, 0.95 in direct) and specificity (0.97 in sequential, 0.99 in direct) of glioblastoma 

prediction, and sensitivity for oligodendroglioma prediction (0.84 for direct and 0.83 for sequential). 

Excellent performance for specificity in both the direct and sequential approaches was noted. 

Interpretability: Plausible Features can be Linked to 

Predictions 

To provide insight into the morphological features driving our network’s predictions, we produced 

heatmaps for a random sample of external validation WSIs for each target. These were then reviewed 

by an expert neuropathologist (SB, Supp. Fig. 7). 
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In the oligodendroglioma and 1p19q cases, so-called “fried egg” cells (densely packed cells with round 

nuclei and perinuclear clearing that resemble fried eggs) were consistently highlighted in our heatmaps, 

indicating that they are important for the prediction of these targets. This was the case for 

oligodendroglioma subtype prediction in both 2016 and 2021 experiments. Similarly, the IDH-wildtype 

and glioblastoma heatmaps (both 2016 and 2021 classifications) focused on areas of microvascular 

proliferation and pseudopalisading necrosis. Interestingly, ATRX mutation heatmaps were mostly ‘cold’. 

In some cases, gemistocytes appeared to be relevant to classification, but these cells were not present in 

all cases (Suppl. Fig. 5G). 

Discussion 

The aim of this work was to recreate the diagnostic neuropathological workflow for diffuse adult-type 

gliomas with Deep Learning. Hence, we utilized a large dataset acquired through the Brain UK 

consortium - the UCL dataset - and demonstrated the efficacy of an attention-based DL pipeline on this 

task. We subsequently illustrated the general applicability of our pipeline by deploying on independent 

data using the publicly available TCGA and CPTAC datasets. 

Through these methods, we were able to demonstrate that Deep Learning can infer both genetic 

alteration status and WHO subtype directly from WSI. Our results for subtype prediction and the three 

core diagnostic alterations were consistently above 0.79 in both internal and external validation. While 

an AUROC of 0.5 would indicate a random classifier, AUROCs of 0.7 - 0.8 indicate that a phenotype 

associated with the target is detectable to some degree by DL32. Thus, we postulate that our model 

successfully identified and leveraged relevant phenotypes for these targets. 

A variance in AUROC between internal- and external- validation experiments was notable for some 

targets. This is a common issue termed domain shift33. Domain shift can occur due to multiple factors, 
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particularly due to variations in tissue processing methods, staining and scanner properties between 

cohorts33. While we employed multiple approaches to alleviate this problem, including training with a 

diverse cohort and normalizing tiles, model generalization remains an open problem in the field33. 

Visual interpretability performed as part of this study highlighted morphologies that are recognized as 

being associated with specific subtypes as important to model decision-making. Fried egg cells and 

chicken-wire vasculature were found to correlate with prediction of 1p19q co-deletion and 

oligodendroglioma subtype. Microvascular proliferation and necrosis correlated with IDH-wildtype and 

glioblastoma predictions, while gemistocytes and Rosenthal fibers correlated with astrocytoma and 

IDHmut predictions (Suppl. Fig. 7). These features are used to make morphological diagnoses by 

neuropathologists2. This indicates that our network used morphology in decision-making similarly to 

that of a neuropathologist and supports the correctness of our model. 

Our study assessed two experimental approaches. Our direct approach predicted tumor subtype directly 

from WSI, whereas the sequential approach predicted mutational alteration statuses. Statistical analysis 

of these approaches indicated that overall, the sequential approach performed better. The sequential 

approach provides the added benefit of interpretability, as it allows pathologists to understand which 

alterations are present in a WSI, and thus support the final predicted subtype diagnosis. However, the 

excellent specificity of the direct approach for glioblastoma prediction should be noted. Glioblastoma is 

important to rule out in the clinical setting due to the poor prognosis34. 

The limitations of our study primarily relate to our data. We were unable to evaluate all targets in the 

2021 WHO CNS classification due to lack of data. Classes were particularly unbalanced for alterations 

such as CDKN2A/B in the UCL cohort and TERT in the TCGA and CPTAC cohorts, which can create 

biased predictions. Similarly, we were not able to externally validate ch+7-10 as we only had data in the 

TCGA cohort. Furthermore, our study only included adult-type diffuse gliomas without considering 

other differential diagnoses, as would take place in clinical practice. 
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Further work would include acquiring more data from different sites. This would allow us to improve 

balance in our classes and provide more varied training data, including common differentials. This 

should help address the issue of domain shift and make our network more applicable to additional 

cohorts. 

In conclusion, our study demonstrates that DL can predict the WHO CNS 2021 subtypes with high 

accuracy in a single and external cohort. Although a small number of studies have previously predicted 

WHO 2016 subtype and some molecular alterations, to our knowledge, no external validation 

experiments for 2016 subtype prediction have been previously performed. Furthermore, this is the first 

study to predict WHO 2021 subtype and the three core diagnostic alterations in one study. 
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Figure and Table Captions 

Table 1: Table 1 provides information on the number of patients within each cohort for which genetic 

alteration data was collected. In the TCGA cohort, the low grade glioma (LGG) and high grade glioma 

(GBM) datasets were combined. As the subtype according to WHO CNS5 was not available in the TCGA 

dataset, molecular alteration data for IDH, 1p19q and ATRX was used to formulate the WHO CNS5 

diagnosis. This process was completed with guidance from a Neuropathologist. Consort charts for each 

cohort can be found in Suppl. Fig. 2. The CPTAC cohort was only used in the CDKN2A/B external 

validation experiment and thus case numbers for the other mutations were not applicable. 

Abbreviations: N/d = no data available. N/a = data not applicable. Ch+7/-10 indicates trisomy of 

chromosome 7 with monosomy of chromosome 10. For gene amplifications, altered represents 

amplification and unaltered no amplification. For chromosomal alterations, altered indicates deletion and/or 

gain and unaltered normal ploidy. * subtype was formulated using molecular alteration data provided with 

the cohort. 

Table 2: Results of Internal and External Validation Experiments. This table provides results for all 

experiments and details of the cohorts used for each experiment. The molecular alteration experiments were 

run as individual experiments. The subtype experiments were run as one experiment but results are listed 

for the prediction of each subtype individually. Experiments 1 - 13 were run in an internal validation setting. 

A five-fold internal cross-validation experiment was conducted, where the data is split randomly into five 

parts, with four parts being used for training the network and the remaining part used to test the model 

performance. This was repeated five times with the test data being rotated each time. Experiments 14 - 25 

were external validation experiments, with training and deployment on the cohorts listed. For external 

validation, all data from one cohort was used to train the model and then deployed on an independent test 
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cohort. We used UCL as a training cohort and TCGA and/or CPTAC as test sets, with the exception of 

CDKN2A/B, as we only had data within one cohort. 

Experiments where the target is a 2016 subtype refers to gliomas that were diagnosed according to the 2016 

WHO diagnostic guidelines. Likewise, experiments where the target is a 2021 subtype refers to gliomas 

that were diagnosed according to the 2021 WHO diagnostic guidelines. Further details on the diagnostic 

approaches can be found in Fig. 1 A&B. 

Abbreviations: Exp. No. = experiment number, AUROC = area under the receiver operating curve. The rate 

at which a model can correctly predict the target, 95% CI = 95% confidence interval. A range of the 

AUROC +/- amount indicated by 95% CI. We can be 95% certain that the true AUROC falls within this 

range. Target = the feature that the network was aiming to predict in that experiment. N/a = not applicable. 

Figure 1: Overview of our Experimental Approach. The flow-chart figures in 1A and 1B outline the 

2016 and 2021 WHO diagnostic algorithm for diffuse-type adult gliomas, for targets we included in our 

experiments. In the 2016 system, gliomas were tested for IDH mutation status before the morphological 

features were assessed to determine grade. Both IDHmut and IDHwt tumors with high-grade (grade IV) 

features were designated glioblastoma. Tumors with lower grade (grade II or III) morphology were 

designated as astrocytoma, unless 1p19q co-deletion was present. Lower grade tumors with IDHmut and 

1p19q co-deletion were designated oligodendrogliomas. In the 2021 system, molecular alteration status 

determines the subtype of glioma. Astrocytomas are IDHmut and ATRXmut. If CDKN2A or CDKN2B 

homozygous deletion is additionally present in an astrocytoma, this automatically upgrades the tumor to 

grade 4. Absence of CDKN2A/B homozygous deletion and absence of high grade morphology indicates 

grade 2 or 3. Oligodendrogliomas are IDHmut, 1p19q co-deleted (complete loss of both arms), TERTmut 

and ATRXwt. Grade 4 oligodendroglioma are not recognized by the 2021 system. Glioblastomas are IDHwt 

with either classic morphology on histology (microvascular proliferation and/or necrosis) or at least one of 
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TERTmut, EGFR amplification, +7/-10 genotype. Abbreviations: MUT - mutated form, WT - wildtype 

form. ND - not deleted. 

The doughnut graphs in figures 1C and 1D show the data split by both 2016 and 2021 subtype diagnosis 

for the UCL and TCGA cohorts respectively. Subtype diagnosis was available for both 2016 and 2021 

criteria for the UCL dataset. In the TCGA dataset, the molecular alteration status for IDH, 1p19q and/or 

ATRX was used to formulate the 2021 subtype. Figure 1E provides an overview of our Deep Learning 

pipeline. The first step is pre-processing where digital WSIs are tessellated into tiles and features extracted 

for each tile. These features are then given to our network and used for either training, testing or 

deployment, depending on the type of experiment being run. Further details of our Deep Learning methods 

can be found in Supplementary Methods. 

Figure 2: Results for Subtype Experiments. This figure shows Receiver Operating Characteristic (ROC) 

Curves and Confusion Matrices (CM) for both 2016 and 2021 subtype experiments. Subtype experiments 

were run as a single experiment. The AUROCs visualize results for each subtype individually, whereas the 

CMs and additional statistics in Fig. 4 relate to overall model performance. CMs and additional statistics 

were calculated with a threshold of 0.5. In each ROC plot (A-C, E-G), the thin lines indicate ROC curves 

for internal validation experiments. Internal validation was performed as five-fold cross-validation. The 

dark blue line indicates the external validation results and shaded area around this line indicates the CI. The 

AUC ± bootstrap CI is given in the bottom right of each plot. Please note, AUC refers to the area under the 

ROC curve, and is thus the same as AUROC. 

D and H are heatmap confusion matrices for the 2016 and 2021 subtype experiments respectively. The 

confusion matrices are constructed from the model prediction output for the external validation experiments 

i.e. the class with the highest probability in external validation was selected as the predicted class. 
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Figure 3: Results for Molecular Alteration Experiments. A-D show Receiver Operating Characteristic 

(ROC) Curves for the molecular alteration experiments. In each ROC plot, the thin lines indicate ROC 

curves for internal validation experiments. Internal validation was performed as five-fold cross-validation. 

The dark blue line indicates external validation results and the shaded area around this line indicates the 

bootstrap CI. The AUC ± bootstrap CI is also given in the bottom right of each plot. Please note, AUC 

refers to the area under the ROC, and is thus the same as AUROC. E-H are confusion matrices (CMs) for 

each molecular alteration experiment. The CMs are constructed from the model prediction output for the 

external validation experiments i.e. the class with the highest probability in external validation was selected 

as the predicted class. CMs were calculated with a threshold of 0.5. 

Abbreviations: MUT = mutant, WT = wildtype, ALT = altered, UA = unaltered. 

Figure 4: Statistical Heatmaps. Figure 4 is a heatmap of the further statistical analysis for our results. A 

shows results for the direct prediction of the 2021 subtypes. B shows results for the final prediction 

following the sequential approach. Here, the 2021 subtype was calculated by stacking the final predictions 

for the IDH, ATRX and 1p19q experiments. Results for IDH prediction were considered first, followed by 

ATRX and 1p19q which were assessed together. Statistics were calculated with a threshold of 0.5. 
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Table 1.  

 UCL n=1882 TCGA n=864 CPTAC n=99 

Altered Un- 

altered 

N/d Altered Un- 

altered 

N/d Altered Un- 

altered 

N/d 

 C
o

re
 D

ia
g

n
o

st
ic

 

A
lt

er
a

ti
o

n
s 

IDH 1116 755 11 410 318 136 N/a N/a N/a 

ATRX 584 887 411 207 521 136 N/a N/a N/a 

1p19q 316 683 883 162 542 160 N/a N/a N/a 

 A
d

d
it

io
n

a
l 

D
ia

g
n

o
st

ic
 

A
lt

er
a

ti
o

n
s 

TERT 524 277 1081 7 721 136 N/a N/a N/a 

EGFR 454 1115 313 207 650 7 N/a N/a N/a 

Ch+7/-10 N/d N/d N/d 247 461 156 N/a N/a N/a 

CDKN2A/B 7 54 1821 266 592 6 56 40 3 
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Table 2.  

 Exp. 

No. 

Target Train 

Cohort 

Deploy 

Cohort  

AUROC 95% CI 

In
te

rn
a
l 

V
a
li

d
a
ti

o
n

 E
x
p

er
im

en
ts

 

1 2016 Astrocytoma  UCL n/a 0.89 0.02 

2 2016 Glioblastoma UCL n/a 0.94 0.01 

3 2016 Oligodendroglioma UCL n/a 0.93 0.01 

4 2021 Astrocytoma UCL n/a 0.92 0.03 

5 2021 Glioblastoma UCL n/a 0.95 0.02 

6 2021 Oligodendroglioma UCL n/a 0.93 0.02 

7 IDH UCL n/a 0.95 0.02 

8 ATRX UCL n/a 0.91 0.03 

9 1p19q UCL n/a 0.80 0.03 

10 TERT UCL n/a 0.74 0.03 

11 EGFR UCL n/a 0.83 0.04 

12 Ch+7/-10 TCGA n/a 0.91 0.03 

13 CDKN2A/B TCGA n/a 0.82 0.02 

 Exp. 

No.  

Target Train 

Cohort 

Deploy 

Cohort 

AUROC 95% CI 

 

E
x
te

rn
a
l 

V
a

li
d

a
ti

o
n

 E
x

p
er

im
en

ts
 14 2016 Astrocytoma UCL TCGA 0.86 0.03 

15 2016 Glioblastoma  UCL TCGA 0.91 0.03 

16 2016 Oligodendroglioma UCL TCGA 0.86 0.04 

17 2021 Astrocytoma UCL TCGA 0.84 0.03 

18 2021 Glioblastoma  UCL TCGA 0.90 0.02 

19 2021 Oligodendroglioma UCL TCGA 0.91 0.03 

20 IDH UCL TCGA 0.90 0.02 
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21 ATRX UCL TCGA 0.79 0.04 

22 1p19q UCL TCGA 0.87 0.03 

23 TERT UCL TCGA 0.60 0.27 

24 EGFR UCL TCGA 0.85 0.03 

25 CDKN2A/B TCGA UCL + 

CPTAC 

0.73 0.07 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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