22 research outputs found

    Designed intramolecular blocking of the spin crossover of an Fe(II) complex

    Get PDF
    A ligand derived from 1,3bpp (2-(pyrazol-1-yl)-6-(pyrazol-3-yl)- pyridine) has been prepared to prove that the spin crossover (SCO) of an Fe(II) complex can be blocked by means of intramolecular interactions not related to the crystal field. Calculations show that the blocking is caused by the energy penalty incurred by the rotation of a phenyl ring, needed to avoid steric hindrance upon SCO

    Designed intramolecular blocking of the spin crossover of an Fe(II) complex

    No full text
    A ligand derived from 1,3bpp (2-(pyrazol-1-yl)-6-(pyrazol-3-yl)-pyridine) has been prepared to prove that the spin crossover (SCO) of an Fe(II) complex can be blocked by means of intramolecular interactions not related to the crystal field. Calculations show that the blocking is caused by the energy penalty incurred by the rotation of a phenyl ring, needed to avoid steric hindrance upon SCO

    Enhanced Interplay between Host–Guest and Spin-Crossover Properties through the Introduction of an N Heteroatom in 2D Hofmann Clathrates

    No full text
    [Image: see text] Controlled modulation of the spin-crossover (SCO) behavior through the sorption–desorption of invited molecules is an extensively exploited topic because of its potential applications in molecular sensing. For this purpose, understanding the mechanisms by which the spin-switching properties are altered by guest molecules is of paramount importance. Here, we show an experimental approach revealing a direct probe of how the interplay between SCO and host–guest chemistry is noticeably activated by chemically tuning the host structure. Thus, the axial ligand 4-phenylpyridine (4-PhPy) in the 2D Hofmann clathrates {Fe(4-PhPy)(2)[M(CN)(4)]} (PhPyM; M = Pt, Pd) is replaced by 2,4-bipyridine (2,4-Bipy), resulting in the isomorphous compounds {Fe(2,4-Bipy)(2)[M(CN)(4)]} (BipyM; M = Pt, Pd), which basically differ from the former in that they have a noncoordinated N heteroatom in the ancillary aromatic substituent, i.e., 2-pyridyl instead of phenyl. Our chemical, magnetic, calorimetric, and structural characterizations demonstrate that this subtle chemical composition change provokes outstanding modifications not only in the capability to adsorb small guests as water or methanol but also in the extent to which these guests affect the SCO characteristics

    Thermal and pressure-induced spin crossover in a novel three-dimensional Hoffman-like clathrate complex

    No full text
    The synthesis and crystal structure of the interpenetrated metal-organic framework material Fe(bpac) 2[Ag(CN) 2] 2 (bpac = 4,4Ăą?ÂČ-bis(pyridyl)acetylene) are reported along with the characterization of its spin crossover properties by variable temperature magnetometry and Mössbauer spectroscopy. The complex presents an incomplete stepped spin transition as a function of temperature that is modified upon successive thermal cycling. The pressure-induced transition has also been investigated by means of high pressure Raman spectroscopy using a diamond anvil cell. The results show that it is possible to reach the thermally-inaccessible fully low spin state at room temperature by applying hydrostatic pressure to the sample. © 2011 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique

    Switchable Spin-Crossover Hofmann-Type 3D Coordination Polymers Based on Tri- and Tetratopic Ligands

    Full text link
    [EN] Fe-II spin-crossover (SCO) coordination polymers of the Hofmann type have become an archetypal class of responsive materials. Almost invariably, the construction of their architectures has been based on the use of monotopic and linear ditopic pyridine like ligands. In the search for new Hofmann-type architectures with SCO properties, here we analyze the possibilities of bridging ligands with higher connectivity degree. More precisely, the synthesis and structure of {Fe-II(L-N3)[M-I(CN)(2)](2)}center dot(Guest) (Guest = nitro-benzene, benzonitrile, o-dichlorobenzene; M-I = Ag, Au) and {Fe-II(L-N4)[Ag-2(CN)(3)][Ag(CN)(2)]}center dot H2O are described, where L-N3 and L-N4 are the tritopic and tetratopic ligands 1,3,5-tris(pyridin-4-ylethynyl)benzene and 1,2,4,5-tetrakis(pyridin-4-ylethynyl)benzene. This new series of Hofmann clathrates displays thermo- and photoinduced SCO behaviors.We thank the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds (CTQ2013-46275-P and CTQ2016-78341-P and Unidad de Excelencia Maria de Maeztu MDM-2015-0538), and Generalitat Valenciana (PROMETEO/2016/147). FJ.V.-M. thanks MINECO for a predoctoral FPI grant. We also thank Dr. Carlos Marti for helping us with ToposPro software.Valverde-Muñoz, FJ.; Muñoz Roca, MDC.; Ferrer, S.; Bartual-Murgui, C.; Real, JA. (2018). Switchable Spin-Crossover Hofmann-Type 3D Coordination Polymers Based on Tri- and Tetratopic Ligands. Inorganic Chemistry. 57(19):12195-12205. https://doi.org/10.1021/acs.inorgchem.8b01842S1219512205571

    Influence of Host-Guest and Host-Host Interactions on the Spin-Crossover 3D Hofmann-type Clathrates {FeII(pina)[MI(CN)2]2·xMeOH (MI = Ag, Au)

    Full text link
    [EN] The synthesis, structural characterization and magnetic properties of two new isostructural porous 3D compounds with the general formula {FeII(pina)[MI(CN)2]2}·xMeOH (x = 0¿5; pina = N-(pyridin-4-yl)isonicotinamide; MI = AgI and x ~ 5 (1·xMeOH); MI = AuI and x ~ 5 (2·xMeOH)) are presented. The single-crystal X-ray diffraction analyses have revealed that the structure of 1·xMeOH (or 2·xMeOH) presents two equivalent doubly interpenetrated 3D frameworks stabilized by both argentophilic (or aurophilic) interactions and interligand C¿O···HC H-bonds. Despite the interpenetration of the networks, these compounds display accessible void volume capable of hosting up to five molecules of methanol which interact with the host pina ligand and establish an infinite lattice of hydrogen bonds along the structural channels. Interestingly, the magnetic studies have shown that solvated complexes 1·xMeOH and 2·xMeOH display two- and four-step hysteretic thermally driven spin transitions, respectively. However, when these compounds lose the methanol molecules, the magnetic behavior changes drastically giving place to gradual spin conversions evidencing the relevant influence of the guest molecules on the spin-crossover properties. Importantly, since the solvent desorption takes place following a single-crystal-to-single-crystal transformation, empty structures 1 and 2 (x = 0) could be also determined allowing us to evaluate the correlation between the structural changes and the modification of the magnetic properties triggered by the loss of methanol molecules.We thank the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER funds (CTQ2016-78341-P and Unidad de Excelencia Maria de Maeztu MDM-2015-0538), and Generalitat Valenciana (PROMETEO/2016/147). F.J.V.-M. thanks MINECO for a predoctoral FPI grant.Valverde-Muñoz, FJ.; Bartual-Murgui, C.; Piñeiro-López, L.; Muñoz Roca, MDC.; Real, JA. (2019). Influence of Host-Guest and Host-Host Interactions on the Spin-Crossover 3D Hofmann-type Clathrates {FeII(pina)[MI(CN)2]2·xMeOH (MI = Ag, Au). Inorganic Chemistry. 58(15):10038-10046. https://doi.org/10.1021/acs.inorgchem.9b01189S1003810046581

    Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer

    Full text link
    [EN] The search for bifunctional materials showing synergies between spin crossover (SCO) and luminescence has attracted substantial interest since they could be promising platforms for new switching electronic and optical technologies. In this context, we present the first three-dimensional Fe-II Hofmann-type coordination polymer exhibiting SCO properties and luminescence. The complex {Fe-II(bpben)[Au(CN)(2)]}@pyr (bpben = 1,4-bis(4-pyridyl)benzene) functionalized with pyrene (pyr) guests undergoes a cooperative multi-step SCO, which has been investigated by single crystal X-ray diffraction, single crystal UV-Vis absorption spectroscopy, and magnetic and calorimetric measurements. The resulting fluorescence from pyrene and exciplex emissions are controlled by the thermal and light irradiation (LIESST effect) dependence of the high/low-spin state population of Fe-II. Conversely, the SCO can be tracked by monitoring the fluorescence emission. This ON-OFF interplay between SCO and luminescence combined with the amenability of Hofmann-type materials to be processed at the nano-scale may be relevant for the generation of SCO-based sensors, actuators and spintronic devices.This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER (CTQ2013-46275-P and CTQ2016-78341-P), Unidad de Excelencia Maria de Maeztu (MDM-2015-0538), Generalitat Valenciana (PROMETEO/2016/147) and the Swiss National Science Foundation (Project number 200021-169033).Delgado, T.; Meneses-Sånchez, M.; Piñeiro-López, L.; Bartual-Murgui, C.; Muñoz Roca, MDC.; Real, J. (2018). Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer. Chemical Science. 9(44):8446-8452. https://doi.org/10.1039/c8sc02677gS8446845294

    {[Hg(SCN)3]2(n-L)}2-: An Efficient Secondary Building Unit for the Synthesis of 2D Iron(II) Spin-Crossover Coordination Polymers

    Full text link
    [EN] We report an unprecedented series of two-dimensional (2D) spin-crossover (SCO) heterobimetallic coordination polymers generically formulated as {Fe-II[(He(SCN)(3))(2)](L)(x))}center dot Solv, where x = 2 for L = tvp (trans-(4,4'-vinylenedipyridine)) (1tvp), bpmh ((1E,2E)-1,2-bis(pyridin-4-ylmethylene)hydrazine) (1bpmh center dot nCH(3)OH; n = 0, 1), by eh ( (1E,2E)-1,2-bis (1-(pyridin-4-yl) ethyliden e) hydrazine) (Ibpeh center dot nH(2)O; n = 0, 1) and x = 2.33 for L = 0 0 bpbz (1,4-bis(pyridin-4-yl)benzene) (1bpbz center dot nH(2)O; n = 0, 2/ 3). The results confirm that self-assembly of Fell, [Hg-II(SCN)(4)](2-), and ditopic rodlike bridging ligands L containing 4-pyridyl moieties favors the formation of linear [Fe(mu-L)](n)(2n+) chains and in situ generated binuclear units {[Hg-II(SCN)(3)](2)(mu-L)}(2)-. The latter act as bridges between adjacent chains generating robust 2D layers. The [(FeN6)-N-II] centers are equatorially surrounded by four NCS- groups and two axial N atoms of the organic ligand L. The compound 1tvp and the unsolvated form of 1bpmh undergo complete SCO centered at T-1/2 = 177 and 226 K, characterized by the enthalpy and entropy variations Delta H = 12.3 and 10.5 kJ mol(-1) and Delta S = 69.4 and 48 J KT-1 mol(-1), respectively. The almost complete SCO of the unsolvated form of 1bpeh occurs at ca. T-1/2 = 119 K and exhibits a complete LIESST effect. Regardless of the degree of solvation, a half-spin conversion at T-1/2 < 100 K occurs for 1bpbz center dot nH(2)O, which becomes almost complete at p = 0.65 GPa. The labile solvent molecules present in 1bpmh center dot CH3OH and 1bpely center dot H2O have a dramatic influence on the corresponding SCO behavior.We thank the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER funds (CTQ2013-46275-P and CTQ2016-78341-P and Unidad de Excelencia Maria de Maeztu MDM-2015-0538), and Generalitat Valenciana (PROMETEO/2016/147). FJ.V.-M. thanks MINECO for a predoctoral FPI grant. D.Z. acknowledges support from the Natural Science Foundation of China (21671121).Zhang, D.; Valverde-Muñoz, FJ.; Bartual-Murgui, C.; Piñeiro-López, L.; Muñoz Roca, MDC.; Real, JA. (2018). {[Hg(SCN)3]2(n-L)}2-: An Efficient Secondary Building Unit for the Synthesis of 2D Iron(II) Spin-Crossover Coordination Polymers. Inorganic Chemistry. 57(3):1562-1571. https://doi.org/10.1021/acs.inorgchem.7b02906S1562157157

    Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material

    Full text link
    [EN] A multistable spin crossover (SCO) molecular alloy system [Fe1-xMx(nBu-im)(3)(tren)](P1-yAsyF6)(2) (M = Zn-II, Ni-II; (nBu-im)(3)(tren) = tris(n-butyl-imidazol(2-ethylamino))amine) has been synthesized and characterized. By controlling the composition of this isomorphous series, two cooperative thermally induced SCO events featuring distinct critical temperatures (T-c) and hysteresis widths (Delta T-c, memory) can be selected at will. The pristine derivative 100As (x = 0, y = 1) displays a strong cooperative two-step SCO and two reversible structural phase transitions (PTs). The low temperature PTLT and the SCO occur synchronously involving conformational changes of the ligand's n-butyl arms and two different arrangements of the AsF6- anions [T-c(1) = 174 K (Delta T-c(1) = 17 K), T-c(2) = 191 K (Delta T-c(2) = 23 K) (scan rate 2 K min(-1))]. The high-temperature PTHT takes place in the high-spin state domain and essentially involves rearrangement of the AsF6- anions [T-c(PT) = 275 K (Delta T-c(PT) = 16 K)]. This behavior strongly contrasts with that of the homologous 100P [x = 0, y = 0] derivative where two separate cooperative one-step SCO can be selected by controlling the kinetics of the coupled PTLT at ambient pressure: (i) one at low temperatures, T-c = 122 K (Delta T-c = 9 K), for temperature scan rates (>1 K min(-1)) (memory channel A) where the structural modifications associated with PTLS are inhibited; (ii) the other centered at T-c = 155 K (Delta T-c = 41 K) for slower temperature scan rates PF6- substitution, and hence of the PTLT kinetics, selectively selects the memory channel B of 100P when x = 0 and y approximate to 0.7. Meanwhile, substitution of Fe-II with Zn-II or Ni-II [x approximate to 0.2, y = 0] favors the low temperature memory channel A at any scan rate. This intriguing interplay between PT, SCO and isomorphous substitution was monitored by single crystal and powder X-ray diffractometries, and magnetic and calorimetric measurements.This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER (CTQ2016-78341-P), Unidad de Excelencia Maria de Maeztu (MDM-2015-0538), and the Generalitat Valenciana through PROMETEO/2016/147 and an EU Framework Program for Research and Innovation (RISE project number 734322). F. J. V. M. and M. M. S. thank MINECO for a predoctoral (FPI) grant.Valverde-Muñoz, FJ.; Seredyuk, M.; Meneses-SĂĄnchez, M.; Muñoz Roca, MDC.; Bartual-Murgui, C.; Real, JA. (2019). Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material. Chemical Science. 10:3807-3816. https://doi.org/10.1039/c8sc05256e3807381610Sato, O. (2016). Dynamic molecular crystals with switchable physical properties. Nature Chemistry, 8(7), 644-656. doi:10.1038/nchem.2547König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2GĂŒtlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5Spin Crossover in Transition Metal Compounds , ed. P. GĂŒtlich and H. Goodwin , Top. Curr. Chem. , 2004 , vol. 233–235Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491cHalcrow, M. A. (2007). The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron, 26(14), 3523-3576. doi:10.1016/j.poly.2007.03.033Bousseksou, A., MolnĂĄr, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042aKahn, O. (1998). Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science, 279(5347), 44-48. doi:10.1126/science.279.5347.44Ohba, M., Yoneda, K., AgustĂ­, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., 
 Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039Salmon, L., MolnĂĄr, G., Zitouni, D., Quintero, C., Bergaud, C., Micheau, J.-C., & Bousseksou, A. (2010). A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles. Journal of Materials Chemistry, 20(26), 5499. doi:10.1039/c0jm00631aPrins, F., Monrabal-Capilla, M., Osorio, E. A., Coronado, E., & van der Zant, H. S. J. (2011). Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Advanced Materials, 23(13), 1545-1549. doi:10.1002/adma.201003821Matsuda, M., Kiyoshima, K., Uchida, R., Kinoshita, N., & Tajima, H. (2013). Characteristics of organic light-emitting devices consisting of dye-doped spin crossover complex films. Thin Solid Films, 531, 451-453. doi:10.1016/j.tsf.2013.01.094Shepherd, H. J., Gural’skiy, I. A., Quintero, C. M., Tricard, S., Salmon, L., MolnĂĄr, G., & Bousseksou, A. (2013). Molecular actuators driven by cooperative spin-state switching. Nature Communications, 4(1). doi:10.1038/ncomms3607Matsukizono, H., Kuroiwa, K., & Kimizuka, N. (2008). Self-assembly-directed Spin Conversion of Iron(II) 1,2,4-Triazole Complexes in Solution and Their Effect on Photorelaxation Processes of Fluorescent Counter Ions. Chemistry Letters, 37(4), 446-447. doi:10.1246/cl.2008.446Lochenie, C., Schötz, K., Panzer, F., Kurz, H., Maier, B., Puchtler, F., 
 Weber, B. (2018). Spin-Crossover Iron(II) Coordination Polymer with Fluorescent Properties: Correlation between Emission Properties and Spin State. Journal of the American Chemical Society, 140(2), 700-709. doi:10.1021/jacs.7b10571Delgado, T., Meneses-SĂĄnchez, M., Piñeiro-LĂłpez, L., Bartual-Murgui, C., Muñoz, M. C., & Real, J. A. (2018). Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer. Chemical Science, 9(44), 8446-8452. doi:10.1039/c8sc02677gChen, Y.-C., Meng, Y., Ni, Z.-P., & Tong, M.-L. (2015). Synergistic electrical bistability in a conductive spin crossover heterostructure. Journal of Materials Chemistry C, 3(5), 945-949. doi:10.1039/c4tc02580fKoo, Y.-S., & GalĂĄn-MascarĂłs, J. R. (2014). Spin Crossover Probes Confer Multistability to Organic Conducting Polymers. Advanced Materials, 26(39), 6785-6789. doi:10.1002/adma.201402579Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O., & Rodriguez, V. (2012). Magnetism and Molecular Nonlinear Optical Second-Order Response Meet in a Spin Crossover Complex. The Journal of Physical Chemistry C, 116(20), 11251-11255. doi:10.1021/jp301552uSenthil Kumar, K., & Ruben, M. (2017). Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 346, 176-205. doi:10.1016/j.ccr.2017.03.024Tayagaki, T., Galet, A., MolnĂĄr, G., Muñoz, M. C., Zwick, A., Tanaka, K., 
 Bousseksou, A. (2005). Metal Dilution Effects on the Spin-Crossover Properties of the Three-Dimensional Coordination Polymer Fe(pyrazine)[Pt(CN)4]. The Journal of Physical Chemistry B, 109(31), 14859-14867. doi:10.1021/jp0521611BaldĂ©, C., Desplanches, C., GĂŒtlich, P., Freysz, E., & LĂ©tard, J. F. (2008). Effect of the metal dilution on the thermal and light-induced spin transition in [FexMn1−x(bpp)2](NCSe)2: When T(LIESST) reaches T1/2. Inorganica Chimica Acta, 361(12-13), 3529-3533. doi:10.1016/j.ica.2008.03.124Yu, Z., Kuroda-Sowa, T., Kume, H., Okubo, T., Maekawa, M., & Munakata, M. (2009). Effects of Metal Doping on the Spin-Crossover Properties of an Iron(II) Complex with Extended π-Conjugated Schiff-Base Ligand Having an N4O2Donor Set. Bulletin of the Chemical Society of Japan, 82(3), 333-337. doi:10.1246/bcsj.82.333Chakraborty, P., Enachescu, C., Humair, A., Egger, L., Delgado, T., Tissot, A., 
 Hauser, A. (2014). Light-induced spin-state switching in the mixed crystal series of the 2D coordination network {[Zn1−xFex(bbtr)3](BF4)2}∞: optical spectroscopy and cooperative effects. Dalton Trans., 43(47), 17786-17796. doi:10.1039/c4dt01728eBaldĂ©, C., Desplanches, C., François LĂ©tard, J., & Chastanet, G. (2017). Effects of metal dilution on the spin-crossover behavior and light induced bistability of iron(II) in [Fe Ni1−(bpp)2](NCSe)2. Polyhedron, 123, 138-144. doi:10.1016/j.poly.2016.08.046Tovee, C. A., Kilner, C. A., Thomas, J. A., & Halcrow, M. A. (2009). Co-crystallising two functional complex molecules in a terpyridine embrace lattice. CrystEngComm, 11(10), 2069. doi:10.1039/b904528gHalcrow, M. A. (2010). Using one spin-transition to trigger another in solid solutions of two different spin-crossover complexes. Chemical Communications, 46(26), 4761. doi:10.1039/c0cc00603cBraga, D., Paolucci, D., Cojazzi, G., & Grepioni, F. (2001). A remarkable water-soluble (molecular) alloy with two tuneable solid-to-solid phase transitions. Chemical Communications, (9), 803-804. doi:10.1039/b101749gZhao, M., Peng, H., Hu, J., & Han, Z. (2008). Effect of Cobalt doping on the microstructure, electrical and ethanol-sensing properties of SmFe1−xCoxO3. Sensors and Actuators B: Chemical, 129(2), 953-957. doi:10.1016/j.snb.2007.10.012ZHANG, R., HU, J., HAN, Z., ZHAO, M., WU, Z., ZHANG, Y., & QIN, H. (2010). Electrical and CO-sensing properties of NdFe1-xCoxO3 perovskite system. Journal of Rare Earths, 28(4), 591-595. doi:10.1016/s1002-0721(09)60160-5Pajerowski, D. M., Yamamoto, T., & Einaga, Y. (2012). Photomagnetic K0.25Ni1–xCox[Fe(CN)6]·nH2O and K0.25Co[Fe(CN)6]0.75y[Cr(CN)6]0.75(1–y)·nH2O Prussian Blue Analogue Solid Solutions. Inorganic Chemistry, 51(6), 3648-3655. doi:10.1021/ic202571dSun, Y., Zhu, Z., Li, J., Gao, S., Xia, H., You, Z., 
 Tu, C. (2015). The Czochralski growth and characterization of a dual-wavelength Raman gain crystal Sr(MoO4)x(WO4)1−x. Optical Materials, 49, 85-89. doi:10.1016/j.optmat.2015.08.023Chorazy, S., Stanek, J. J., Nogaƛ, W., Majcher, A. M., Rams, M., KozieƂ, M., 
 Podgajny, R. (2016). Tuning of Charge Transfer Assisted Phase Transition and Slow Magnetic Relaxation Functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) Molecular Solid Solution. Journal of the American Chemical Society, 138(5), 1635-1646. doi:10.1021/jacs.5b11924Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J., & GĂŒtlich, P. (2008). Does the Solid−Liquid Crystal Phase Transition Provoke the Spin-State Change in Spin-Crossover Metallomesogens? Journal of the American Chemical Society, 130(4), 1431-1439. doi:10.1021/ja077265zSeredyuk, M., Muñoz, M. C., Castro, M., Romero-Morcillo, T., Gaspar, A. B., & Real, J. A. (2013). Unprecedented Multi-Stable Spin Crossover Molecular Material with Two Thermal Memory Channels. Chemistry - A European Journal, 19(21), 6591-6596. doi:10.1002/chem.201300394Seredyuk, M., Muñoz, M. C., Ksenofontov, V., GĂŒtlich, P., Galyametdinov, Y., & Real, J. A. (2014). Spin Crossover Star-Shaped Metallomesogens of Iron(II). Inorganic Chemistry, 53(16), 8442-8454. doi:10.1021/ic5010159Romero-Morcillo, T., Seredyuk, M., Muñoz, M. C., & Real, J. A. (2015). Meltable Spin Transition Molecular Materials with TunableTcand Hysteresis Loop Width. Angewandte Chemie International Edition, 54(49), 14777-14781. doi:10.1002/anie.201507620Delgado, T., Tissot, A., GuĂ©nĂ©e, L., Hauser, A., Valverde-Muñoz, F. J., Seredyuk, M., 
 Besnard, C. (2018). Very Long-Lived Photogenerated High-Spin Phase of a Multistable Spin-Crossover Molecular Material. Journal of the American Chemical Society, 140(40), 12870-12876. doi:10.1021/jacs.8b06042Jeftić, J., Romstedt, H., & Hauser, A. (1996). The interplay between the spin transition and the crystallographic phase transition in the fe(II) spin-crossover system [Zn1−xFex(ptz)6](BF4)2 (x = 0.1, 1;ptz= 1-propyltetrazole). Journal of Physics and Chemistry of Solids, 57(11), 1743-1750. doi:10.1016/0022-3697(96)00033-9Hayami, S., Komatsu, Y., Shimizu, T., Kamihata, H., & Lee, Y. H. (2011). Spin-crossover in cobalt(II) compounds containing terpyridine and its derivatives. Coordination Chemistry Reviews, 255(17-18), 1981-1990. doi:10.1016/j.ccr.2011.05.016Schlamp, S., Weber, B., Naik, A. D., & Garcia, Y. (2011). Cooperative spin transition in a lipid layer like system. Chemical Communications, 47(25), 7152. doi:10.1039/c1cc12162fYamasaki, M., & Ishida, T. (2015). Heating-rate dependence of spin-crossover hysteresis observed in an iron(ii) complex having tris(2-pyridyl)methanol. Journal of Materials Chemistry C, 3(30), 7784-7787. doi:10.1039/c5tc00926jGaspar, A. B., & Seredyuk, M. (2014). Spin crossover in soft matter. Coordination Chemistry Reviews, 268, 41-58. doi:10.1016/j.ccr.2014.01.018Rosario-Amorin, D., Dechambenoit, P., Bentaleb, A., RouziĂšres, M., MathoniĂšre, C., & ClĂ©rac, R. (2017). Multistability at Room Temperature in a Bent-Shaped Spin-Crossover Complex Decorated with Long Alkyl Chains. Journal of the American Chemical Society, 140(1), 98-101. doi:10.1021/jacs.7b11042Fujinami, T., Nishi, K., Hamada, D., Murakami, K., Matsumoto, N., Iijima, S., 
 Sunatsuki, Y. (2015). Scan Rate Dependent Spin Crossover Iron(II) Complex with Two Different Relaxations and Thermal Hysteresisfac-[FeII(HLn-Pr)3]Cl·PF6(HLn-Pr= 2-Methylimidazol-4-yl-methylideneamino-n-propyl). Inorganic Chemistry, 54(15), 7291-7300. doi:10.1021/acs.inorgchem.5b00701Ueno, T., Ii, Y., Fujinami, T., Matsumoto, N., Iijima, S., & Sunatsuki, Y. (2017). Polymorphs of spin-crossover iron(II) complex fac -[Fe II (HL n -Pr ) 3 ]Cl·PF 6 (HL n -Pr = 2-methylimidazol-4-yl-methylideneamino- n -propyl): Assembly structures and scan rate dependent spin-crossover properties with thermal hysteresis. Polyhedron, 136, 13-22. doi:10.1016/j.poly.2017.03.028Weselski, M., KsiÄ…ĆŒek, M., Rokosz, D., Dreczko, A., Kusz, J., & Bronisz, R. (2018). Double spin transition in a two dimensional Fe(ii) coordination network. Chemical Communications, 54(31), 3895-3898. doi:10.1039/c8cc01621fLĂ©tard, J.-F., Guionneau, P., Nguyen, O., Costa, J. S., MarcĂ©n, S., Chastanet, G., 
 Goux-Capes, L. (2005). A Guideline to the Design of Molecular-Based Materials with Long-Lived Photomagnetic Lifetimes. Chemistry - A European Journal, 11(16), 4582-4589. doi:10.1002/chem.200500112Ksenofontov, V., Gaspar, A. B., & GĂŒtlich, P. (s. f.). Pressure Effect Studies on Spin Crossover and Valence Tautomeric Systems. Spin Crossover in Transition Metal Compounds III, 23-64. doi:10.1007/b95421Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001Juhász, G., Matsuda, R., Kanegawa, S., Inoue, K., Sato, O., & Yoshizawa, K. (2009). Bistability of Magnetization without Spin-Transition in a High-Spin Cobalt(II) Complex due to Angular Momentum Quenching. Journal of the American Chemical Society, 131(13), 4560-4561. doi:10.1021/ja808448jTurner, M. J., McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2011). Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 13(6), 1804-1813. doi:10.1039/c0ce00683aBaran, M., Dyakonov, V., GƂadczuk, L., Levchenko, G., Piechota, S., & Szymczak, H. (1995). Comparative study of the pressure effect on critical parameters of GdBa2Cu4O8 and YBa2Cu4O8. Physica C: Superconductivity, 241(3-4), 383-388. doi:10.1016/0921-4534(94)02359-xEiling, A., & Schilling, J. S. (1981). Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In. Journal of Physics F: Metal Physics, 11(3), 623-639. doi:10.1088/0305-4608/11/3/010Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s205322961402421
    corecore