1,698 research outputs found

    First-order transition in small-world networks

    Full text link
    The small-world transition is a first-order transition at zero density pp of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by Δp∌L−d\Delta p \sim L^{-d}. Equivalently a ``persistence size'' L∗∌p−1/dL^* \sim p^{-1/d} can be defined in connection with finite-size effects. Assuming L∗∌p−τL^* \sim p^{-\tau}, simple rescaling arguments imply that τ=1/d\tau=1/d. We confirm this result by extensive numerical simulation in one to four dimensions, and argue that τ=1/d\tau=1/d implies that this transition is first-order.Comment: 4 pages, 3 figures, To appear in Europhysics Letter

    Inter- and Intra-Chain Attractions in Solutions of Flexible Polyelectrolytes at Nonzero Concentration

    Full text link
    Constant temperature molecular dynamics simulations were used to study solutions of flexible polyelectrolyte chains at nonzero concentrations with explicit counterions and unscreened coulombic interactions. Counterion condensation, measured via the self-diffusion coefficient of the counterions, is found to increase with polymer concentration, but contrary to the prediction of Manning theory, the renormalized charge fraction on the chains decreases with increasing Bjerrum length without showing any saturation. Scaling analysis of the radius of gyration shows that the chains are extended at low polymer concentrations and small Bjerrum lengths, while at sufficiently large Bjerrum lengths, the chains shrink to produce compact structures with exponents smaller than a gaussian chain, suggesting the presence of attractive intrachain interactions. A careful study of the radial distribution function of the center-of-mass of the polyelectrolyte chains shows clear evidence that effective interchain attractive interactions also exist in solutions of flexible polyelectrolytes, similar to what has been found for rodlike polyelectrolytes. Our results suggest that the broad maximum observed in scattering experiments is due to clustering of chains.Comment: 12 pages, REVTeX, 15 eps figure

    Gender homophily from spatial behavior in a primary school: a sociometric study

    Full text link
    We investigate gender homophily in the spatial proximity of children (6 to 12 years old) in a French primary school, using time-resolved data on face-to-face proximity recorded by means of wearable sensors. For strong ties, i.e., for pairs of children who interact more than a defined threshold, we find statistical evidence of gender preference that increases with grade. For weak ties, conversely, gender homophily is negatively correlated with grade for girls, and positively correlated with grade for boys. This different evolution with grade of weak and strong ties exposes a contrasted picture of gender homophily

    Voter models on weighted networks

    Get PDF
    We study the dynamics of the voter and Moran processes running on top of complex network substrates where each edge has a weight depending on the degree of the nodes it connects. For each elementary dynamical step the first node is chosen at random and the second is selected with probability proportional to the weight of the connecting edge. We present a heterogeneous mean-field approach allowing to identify conservation laws and to calculate exit probabilities along with consensus times. In the specific case when the weight is given by the product of nodes' degree raised to a power theta, we derive a rich phase-diagram, with the consensus time exhibiting various scaling laws depending on theta and on the exponent of the degree distribution gamma. Numerical simulations give very good agreement for small values of |theta|. An additional analytical treatment (heterogeneous pair approximation) improves the agreement with numerics, but the theoretical understanding of the behavior in the limit of large |theta| remains an open challenge.Comment: 21 double-spaced pages, 6 figure

    Compaction dynamics of a granular media under vertical tapping

    Full text link
    We report new experimental results on granular compaction under consecutive vertical taps. The evolution of the mean volume fraction and of the mean potential energy of a granular packing presents a slow densification until a final steady-state, and is reminiscent to usual relaxation in glasses via a stretched exponential law. The intensity of the taps seems to rule the characteristic time of the relaxation according to an Arrhenius's type relation >. Finally, the analysis of the vertical volume fraction profile reveals an almost homogeneous densification in the packing.Comment: 7 pages, 4 figures, to appear in Europhysics Letter

    Soft effective interactions between weakly charged polyelectrolyte chains

    Full text link
    We apply extensive Molecular Dynamics simulations and analytical considerations in order to study the conformations and the effective interactions between weakly charged, flexible polyelectrolyte chains in salt-free conditions. We focus on charging fractions lying below 20%, for which case there is no Manning condensation of counterions and the latter can be thus partitioned in two states: those that are trapped within the region of the flexible chain and the ones that are free in the solution. We examine the partition of counterions in these two states, the chain sizes and the monomer distributions for various chain lengths, finding that the monomer density follows a Gaussian shape. We calculate the effective interaction between the centers of mass of two interacting chains, under the assumption that the chains can be modeled as two overlapping Gaussian charge profiles. The analytical calculations are compared with measurements from Molecular Dynamics simulations. Good quantitative agreement is found for charging fractions below 10%, where the chains assume coil-like configurations, whereas deviations develop for charge fraction of 20%, in which case a conformational transition of the chain towards a rodlike configuration starts to take place.Comment: 38 pages, 12 figures, 2 tables. Revised version of the manuscript. Selected for publication in the V\irtual Journal of Biological Physics Research, issue of 1 september, 200

    Spatially heterogeneous dynamics and dynamic facilitation in a model of viscous silica

    Full text link
    Performing molecular dynamics simulations, we find that the structural relaxation dynamics of viscous silica, the prototype of a strong glass former, are spatially heterogeneous and cannot be understood as a statistical bond breaking process. Further, we show that high particle mobility predominantly propagates continuously through the melt, supporting the concept of dynamic facilitation emphasized in recent theoretical work.Comment: 4 pages, 4 figure

    Dynamics of simple liquids at heterogeneous surfaces : Molecular Dynamics simulations and hydrodynamic description

    Full text link
    In this paper we consider the effect of surface heterogeneity on the slippage of fluid, using two complementary approaches. First, MD simulations of a corrugated hydrophobic surface have been performed. A dewetting transition, leading to a super-hydrophobic state, is observed for pressure below a ``capillary'' pressure. Conversely a very large slippage of the fluid on this composite interface is found in this superhydrophobic state. Second, we propose a macroscopic estimate of the effective slip length on the basis of continuum hydrodynamics, in order to rationalize the previous MD results. This calculation allows to estimate the effect of a heterogeneous slip length pattern on the composite interface. Comparison between the two approaches are in good agreement at low pressure, but highlights the role of the exact shape of the liquid-vapor interface at higher pressure. These results confirm that small variations in the roughness of a surface can lead to huge differences in the slip effect. On the basis of these results, we propose some guidelines to design highly slippery surfaces, motivated by potential applications in microfluidics.Comment: submitted to EPJ

    Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field

    Full text link
    We study the local disorder in the deformation of amorphous materials by decomposing the particle displacements into a continuous, inhomogeneous field and the corresponding fluctuations. We compare these fields to the commonly used non-affine displacements in an elastically deformed 2D Lennard-Jones glass. Unlike the non-affine field, the fluctuations are very localized, and exhibit a much smaller (and system size independent) correlation length, on the order of a particle diameter, supporting the applicability of the notion of local "defects" to such materials. We propose a scalar "noise" field to characterize the fluctuations, as an additional field for extended continuum models, e.g., to describe the localized irreversible events observed during plastic deformation.Comment: Minor corrections to match the published versio

    Universal velocity distributions in an experimental granular fluid

    Full text link
    We present experimental results on the velocity statistics of a uniformly heated granular fluid, in a quasi-2D configuration. We find the base state, as measured by the single particle velocity distribution f(c)f(c), to be universal over a wide range of filling fractions and only weakly dependent on all other system parameters. There is a consistent overpopulation in the distribution's tails, which scale as f∝exp⁡(const.×c−3/2)f\propto\exp(\mathrm{const.}\times c^{-3/2}). More importantly, the high probability central region of f(c)f(c), at low velocities, deviates from a Maxwell-Boltzmann by a second order Sonine polynomial with a single adjustable parameter, in agreement with recent theoretical analysis of inelastic hard spheres driven by a stochastic thermostat. To our knowledge, this is the first time that Sonine deviations have been measured in an experimental system.Comment: 13 pages, 15 figures, with minor corrections, submitted to Phys. Rev.
    • 

    corecore