169 research outputs found

    Secondary infarction in single or in multiple vascular territories: two different entities following subarachnoid hemorrhage?

    Get PDF
    The pathogenesis of secondary infarctions (SI) after aneurysmal subarachnoid hemorrhage (SAH) is poorly understood. To assess whether SI in single (SSI) or multiple (MSI) vascular territories represent different disease entities, we compared clinical profiles of patients with these patterns of SI. CT/MRI-examinations of 448 patients were reviewed for new infarctions within 28 days after SAH, and categorized into SSI or MSI. Only patients with adequate follow-up imaging excluding any new infarctions were included for analysis (269 patients). Procedure-related infarctions were excluded. Odds ratios (ORs) with corresponding 95% confidence intervals (CI) were calculated for patients with SSI or MSI versus patients without SI to analyze differences in demographic characteristics, vascular risk factors, disease-related characteristics and treatment modalities. Thirty-six patients had SSI, 53 MSI and 180 no SI. ORs in MSI-patients were >1.5 times higher compared with ORs in SSI-patients for multiple vascular risk factors [MSI:5.4 (2.3–13) versus SSI:1.2 (0.5–2.8)], poor clinical condition on admission [MSI:4.6 (2.4–8.9) versus SSI:2.4 (1.1–5.2)], initial loss of consciousness [MSI:2.6 (1.3–5.3) versus SSI:1.1 (0.5–2.3)] and large amounts of intraventricular blood [MSI:2.9 (1.4–5.8) versus SSI:1.5 (0.7–3.2)]. In multivariate analysis ORs remained higher in MSI for presence of multiple vascular risk factors [MSI:1.9 (1.2–2.9) versus SSI:1.1 (0.8–1.7)] and initial loss of consciousness [MSI:3.0 (1.0–8.9) versus SSI:1.6 (0.6–4.0)]. Our findings suggest that SSI and MSI after SAH are not distinct disease entities. MSI was related to the same characteristics as SSI but to a larger extent, specifically to the presence of multiple vascular risk factors, initial loss of consciousness, larger amounts of intraventricular blood, and poor clinical status on admission

    A Fisher-Rao Metric for curves using the information in edges

    Get PDF
    Two curves which are close together in an image are indistinguishable given a measurement, in that there is no compelling reason to associate the measurement with one curve rather than the other. This observation is made quantitative using the parametric version of the Fisher-Rao metric. A probability density function for a measurement conditional on a curve is constructed. The distance between two curves is then defined to be the Fisher-Rao distance between the two conditional pdfs. A tractable approximation to the Fisher-Rao metric is obtained for the case in which the measurements are compound in that they consist of a point x and an angle α which specifies the direction of an edge at x. If the curves are circles or straight lines, then the approximating metric is generalized to take account of inlying and outlying measurements. An estimate is made of the number of measurements required for the accurate location of a circle in the presence of outliers. A Bayesian algorithm for circle detection is defined. The prior density for the algorithm is obtained from the Fisher-Rao metric. The algorithm is tested on images from the CASIA Iris Interval database

    Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management

    Get PDF
    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems

    The viral protein corona directs viral pathogenesis and amyloid aggregation

    Get PDF
    Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid beta-peptide (A beta(42)), a major constituent of amyloid plaques in Alzheimer's disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral-host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies.Peer reviewe

    Insights into the Mechanism of Ligand Binding to Octopine Dehydrogenase from Pecten maximus by NMR and Crystallography

    Get PDF
    Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD+, and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered binding of NADH, L-arginine and finally pyruvate. Here, the order of substrate binding as well as the underlying conformational changes were investigated by NMR confirming the model derived from the crystal structures. Furthermore, the crystal structure of the OcDH/NADH/agmatine complex was determined which suggests a key role of the side chain of L-arginine in protein cataylsis. Thus, the order of substrate binding to OcDH as well as the molecular signals involved in octopine formation can now be described in molecular detail

    The Collagen Chaperone HSP47 Is a New Interactor of APP that Affects the Levels of Extracellular Beta-Amyloid Peptides

    Get PDF
    Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive decline of cognitive function that represents one of the most dramatic medical challenges for the aging population. Aβ peptides, generated by processing of the Amyloid Precursor Protein (APP), are thought to play a central role in the pathogenesis of AD. However, the network of physical and functional interactions that may affect their production and deposition is still poorly understood. The use of a bioinformatic approach based on human/mouse conserved coexpression allowed us to identify a group of genes that display an expression profile strongly correlated with APP. Among the most prominent candidates, we investigated whether the collagen chaperone HSP47 could be functionally correlated with APP. We found that HSP47 accumulates in amyloid deposits of two different mouse models and of some AD patients, is capable to physically interact with APP and can be relocalized by APP overexpression. Notably, we found that it is possible to reduce the levels of secreted Aβ peptides by reducing the expression of HSP47 or by interfering with its activity via chemical inhibitors. Our data unveil HSP47 as a new functional interactor of APP and imply it as a potential target for preventing the formation and/or growth amyloid plaques

    Population genetic structure of Streptococcus pneumoniae in Kilifi, Kenya, prior to the introduction of pneumococcal conjugate vaccine.

    Get PDF
    BACKGROUND: The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10. METHODS AND FINDINGS: Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤ 2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates. CONCLUSIONS: Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation
    corecore