1,017 research outputs found

    Genome-wide association study of behavioural and psychiatric features in human prion disease.

    Get PDF
    Prion diseases are rare neurodegenerative conditions causing highly variable clinical syndromes, which often include prominent neuropsychiatric symptoms. We have recently carried out a clinical study of behavioural and psychiatric symptoms in a large prospective cohort of patients with prion disease in the United Kingdom, allowing us to operationalise specific behavioural/psychiatric phenotypes as traits in human prion disease. Here, we report exploratory genome-wide association analysis on 170 of these patients and 5200 UK controls, looking for single-nucleotide polymorphisms (SNPs) associated with three behavioural/psychiatric phenotypes in the context of prion disease. We also specifically examined a selection of candidate SNPs that have shown genome-wide association with psychiatric conditions in previously published studies, and the codon 129 polymorphism of the prion protein gene, which is known to modify various aspects of the phenotype of prion disease. No SNPs reached genome-wide significance, and there was no evidence of altered burden of known psychiatric risk alleles in relevant prion cases. SNPs showing suggestive evidence of association (P<10(-5)) included several lying near genes previously implicated in association studies of other psychiatric and neurodegenerative diseases. These include ANK3, SORL1 and a region of chromosome 6p containing several genes implicated in schizophrenia and bipolar disorder. We would encourage others to acquire phenotype data in independent cohorts of patients with prion disease as well as other neurodegenerative and neuropsychiatric conditions, to allow meta-analysis that may shed clearer light on the biological basis of these complex disease manifestations, and the diseases themselves

    A Cross-Match of 2MASS and SDSS: Newly-Found L and T Dwarfs and an Estimate of the Space Densitfy of T Dwarfs

    Get PDF
    We report new L and T dwarfs found in a cross-match of the SDSS Data Release 1 and 2MASS. Our simultaneous search of the two databases effectively allows us to relax the criteria for object detection in either survey and to explore the combined databases to a greater completeness level. We find two new T dwarfs in addition to the 13 already known in the SDSS DR1 footprint. We also identify 22 new candidate and bona-fide L dwarfs, including a new young L2 dwarf and a peculiar L2 dwarf with unusually blue near-IR colors: potentially the result of mildly sub-solar metallicity. These discoveries underscore the utility of simultaneous database cross-correlation in searching for rare objects. Our cross-match completes the census of T dwarfs within the joint SDSS and 2MASS flux limits to the 97% level. Hence, we are able to accurately infer the space density of T dwarfs. We employ Monte Carlo tools to simulate the observed population of SDSS DR1 T dwarfs with 2MASS counterparts and find that the space density of T0-T8 dwarf systems is 0.0070 (-0.0030; +0.0032) per cubic parsec (95% confidence interval), i.e., about one per 140 cubic parsecs. Compared to predictions for the T dwarf space density that depend on various assumptions for the sub-stellar mass function, this result is most consistent with models that assume a flat sub-stellar mass function dN/dM ~ M^0. No >T8 dwarfs were discovered in the present cross-match, though less than one was expected in the limited area (2099 sq. degrees) of SDSS DR1.Comment: To appear in ApJ, Feb 10, 2008 issue. 37 pages, including 12 figures and 14 table

    Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein

    Get PDF
    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized

    Stochastic Modelling Approach to the Incubation Time of Prionic Diseases

    Full text link
    Transmissible spongiform encephalopathies like the bovine spongiform encephalopathy (BSE) and the Creutzfeldt-Jakob disease (CJD) in humans are neurodegenerative diseases for which prions are the attributed pathogenic agents. A widely accepted theory assumes that prion replication is due to a direct interaction between the pathologic (PrPsc) form and the host encoded (PrPc) conformation, in a kind of an autocatalytic process. Here we show that the overall features of the incubation time of prion diseases are readily obtained if the prion reaction is described by a simple mean-field model. An analytical expression for the incubation time distribution then follows by associating the rate constant to a stochastic variable log normally distributed. The incubation time distribution is then also shown to be log normal and fits the observed BSE data very well. The basic ideas of the theoretical model are then incorporated in a cellular automata model. The computer simulation results yield the correct BSE incubation time distribution at low densities of the host encoded protein

    Bank vole prion protein extends the use of RT-QuIC assays to detect prions in a range of inherited prion diseases

    Get PDF
    The cerebrospinal fluid (CSF) real-time quaking-induced conversion assay (RT-QuIC) is an ultrasensitive prion amyloid seeding assay for diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) but several prion strains remain unexplored or resistant to conversion with commonly used recombinant prion protein (rPrP) substrates. Here, bank vole (BV) rPrP was used to study seeding by a wide range of archived post-mortem human CSF samples from cases of sporadic, acquired and various inherited prion diseases in high throughput 384-well format. BV rPrP substrate yielded positive reactions in 70/79 cases of sporadic CJD [Sensitivity 88.6% (95% CI 79.5-94.7%)], 1/2 variant CJD samples, and 9/20 samples from various inherited prion diseases; 5/57 non-prion disease control CSFs had positive reactions, yielding an overall specificity of 91.2% (95% CI 80.1-97.1%). Despite limitations of using post-mortem samples and our results' discrepancy with other studies, we demonstrated for the first time that BV rPrP is susceptible to conversion by human CSF samples containing certain prion strains not previously responsive in conventional rPrPs, thus justifying further optimisation for wider diagnostic and prognostic use

    Physical, chemical and kinetic factors affecting prion infectivity

    Get PDF
    The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process

    On the Spectral Evolution of Cool, Helium-Atmosphere White Dwarfs: Detailed Spectroscopic and Photometric Analysis of DZ Stars

    Full text link
    We present a detailed analysis of a large spectroscopic and photometric sample of DZ white dwarfs based on our latest model atmosphere calculations. We revise the atmospheric parameters of the trigonometric parallax sample of Bergeron, Leggett, & Ruiz (12 stars) and analyze 147 new DZ white dwarfs discovered in the Sloan Digital Sky Survey. The inclusion of metals and hydrogen in our model atmosphere calculations leads to different atmospheric parameters than those derived from pure helium models. Calcium abundances are found in the range from log (Ca/He) = -12 to -8. We also find that fits of the coolest objects show peculiarities, suggesting that our physical models may not correctly describe the conditions of high atmospheric pressure encountered in the coolest DZ stars. We find that the mean mass of the 11 DZ stars with trigonometric parallaxes, = 0.63 Mo, is significantly lower than that obtained from pure helium models, = 0.78 Mo, and in much better agreement with the mean mass of other types of white dwarfs. We determine hydrogen abundances for 27% of the DZ stars in our sample, while only upper limits are obtained for objects with low signal-to-noise ratio spectroscopic data. We confirm with a high level of confidence that the accretion rate of hydrogen is at least two orders of magnitude smaller than that of metals (and up to five in some cases) to be compatible with the observations. We find a correlation between the hydrogen abundance and the effective temperature, suggesting for the first time empirical evidence of a lower temperature boundary for the hydrogen screening mechanism. Finally, we speculate on the possibility that the DZA white dwarfs could be the result of the convective mixing of thin hydrogen-rich atmospheres with the underlying helium convection zone.Comment: 67 pages, 32 figures, accepted for publication in Ap

    An approximate model for cancellous bone screw fixation

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Taylor & Francis.This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement

    Ex vivomammalian prions are formed of paired double helical prion protein fibrils

    Get PDF
    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP
    corecore