291 research outputs found
Cost-effectiveness of voluntary HIV-1 counseling and testing in reducing sexual transmission of HIV-1 in Kenya and Tanzania.
Background Access to HIV-1 voluntary counseling and testing (VCT) is severely limited in less-developed countries. We undertook a multisite trial of HIV-1 VCT to assess its impact, cost, and cost-effectiveness in less-developed country settings.\ud
Methods\ud
The cost-effectiveness of HIV-1 VCT was estimated for a hypothetical cohort of 10 000 people seeking VCT in urban east Africa. Outcomes were modelled based on results from a randomised controlled trial of HIV-1 VCT in Tanzania and Kenya. Our main outcome measures included programme cost, number of HIV-1 infections averted, cost per HIV-1 infection averted, and cost per disability-adjusted life-year (DALY) saved. We also modelled the impact of targeting VCT by HIV-1 prevalence of the client population, and the proportion of clients who receive VCT as a couple compared with as individuals. Sensitivity analysis was done on all model parameters.\ud
Findings\ud
HIV-1 VCT was estimated to avert 1104 HIV-1 infections in Kenya and 895 in Tanzania during the subsequent year. The cost per HIV-1 infection averted was US346, respectively, and the cost per DALY saved was 17·78. The intervention was most cost-effective for HIV-1-infected people and those who received VCT as a couple. The cost-effectiveness of VCT was robust, with a range for the average cost per DALY saved of 6·58-45·03 in Tanzania. Analysis of targeting showed that increasing the proportion of couples to 70% reduces the cost per DALY saved to 13·39 in Tanzania, and that targeting a population with HIV-1 prevalence of 45% decreased the cost per DALY saved to 11·74 in Tanzania.\ud
Interpretation\ud
HIV-1 VCT is highly cost-effective in urban east African settings, but slightly less so than interventions such as improvement of sexually transmitted disease services and universal provision of nevirapine to pregnant women in high-prevalence settings. With the targeting of VCT to populations with high HIV-1 prevalence and couples the cost-effectiveness of VCT is improved significantly
Emergence of canonical ensembles from pure quantum states
We consider a system weakly interacting with a bath as a thermodynamic
setting to establish a quantum foundation of statistical physics. It is shown
that even if the composite system is initially in an arbitrary nonequilibrium
pure quantum state, the unitary dynamics of a generic weak interaction almost
always drives the subsystem into the canonical ensemble, in the usual sense of
typicality. A crucial step is taken by assuming that the matrix elements of the
interaction Hamiltonian have random phases, while their amplitudes are left
unrestricted
Maximal-entropy random walk unifies centrality measures
In this paper analogies between different (dis)similarity matrices are
derived. These matrices, which are connected to path enumeration and random
walks, are used in community detection methods or in computation of centrality
measures for complex networks. The focus is on a number of known centrality
measures, which inherit the connections established for similarity matrices.
These measures are based on the principal eigenvector of the adjacency matrix,
path enumeration, as well as on the stationary state, stochastic matrix or mean
first-passage times of a random walk. Particular attention is paid to the
maximal-entropy random walk, which serves as a very distinct alternative to the
ordinary random walk used in network analysis.
The various importance measures, defined both with the use of ordinary random
walk and the maximal-entropy random walk, are compared numerically on a set of
benchmark graphs. It is shown that groups of centrality measures defined with
the two random walks cluster into two separate families. In particular, the
group of centralities for the maximal-entropy random walk, connected to the
eigenvector centrality and path enumeration, is strongly distinct from all the
other measures and produces largely equivalent results.Comment: 7 pages, 2 figure
Fiber-Based Measurement of Bow-Shock Spectra for Reentry Flight Testing
We demonstrated a fiber-based approach for obtaining optical spectra of a glowing bow shock in a high-enthalpy air flow. The work was performed in a ground test with the NASA Ames Aerodynamic Heating Facility (AHF) that is used for atmospheric reentry simulation. The method uses a commercial fiber optic that is embedded in the nose of an ablating bluntbody model and provides a line-of-sight view in the streamwise direction - directly upstream into the hot post-shock gas flow. Both phenolic impregnated carbon ablator (PICA) and phenolic carbon (PhenCarb 28) materials were used as thermal protection systems. Results show that the fibers survive the intense heat and operate sufficiently well during the first several seconds of a typical AHF run (20 MJ/kg). This approach allowed the acquisition of optical spectra, enabling a Boltzmann-based electronic excitation temperature measurement from Cu atom impurities (averaged over a line-of-sight through the gas cap, with a 0.04 sec integration time)
Fixation, transient landscape and diffusion's dilemma in stochastic evolutionary game dynamics
Agent-based stochastic models for finite populations have recently received
much attention in the game theory of evolutionary dynamics. Both the ultimate
fixation and the pre-fixation transient behavior are important to a full
understanding of the dynamics. In this paper, we study the transient dynamics
of the well-mixed Moran process through constructing a landscape function. It
is shown that the landscape playing a central theoretical "device" that
integrates several lines of inquiries: the stable behavior of the replicator
dynamics, the long-time fixation, and continuous diffusion approximation
associated with asymptotically large population. Several issues relating to the
transient dynamics are discussed: (i) multiple time scales phenomenon
associated with intra- and inter-attractoral dynamics; (ii) discontinuous
transition in stochastically stationary process akin to Maxwell construction in
equilibrium statistical physics; and (iii) the dilemma diffusion approximation
facing as a continuous approximation of the discrete evolutionary dynamics. It
is found that rare events with exponentially small probabilities, corresponding
to the uphill movements and barrier crossing in the landscape with multiple
wells that are made possible by strong nonlinear dynamics, plays an important
role in understanding the origin of the complexity in evolutionary, nonlinear
biological systems.Comment: 34 pages, 4 figure
A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies
Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery-based measurement capability to support cross cutting applications that span the Agency mission directorates as well as meeting potential needs of the commercial sector and national interests of the Intelligence, Surveillance and Reconnaissance community are explored. A recommendation is made for an assessment study to baseline current imaging technology including the identification of future mission requirements. Development of requirements fostered by the applications suggested in this paper would be used to identify technology gaps and direct roadmapping for implementation of an affordable and sustainable next generation sensor/platform system
Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium Acinetobacter baumannii
Acinetobacter baumannii is an important human pathogen that can form biofilms and persist under harsh environmental conditions. Biofilm formation and virulence are modulated by blue light, which is thought to be regulated by a BLUF protein, BlsA. To understand the molecular mechanism of light sensing, we have used steady-state and ultrafast vibrational spectroscopy to compare the photoactivation mechanism of BlsA to the BLUF photosensor AppA from Rhodobacter sphaeroides. Although similar photocycles are observed, vibrational data together with homology modeling identify significant differences in the β5 strand in BlsA caused by photoactivation, which are proposed to be directly linked to downstream signaling
BLUF Domain Function Does Not Require a Metastable Radical Intermediate State
BLUF
(blue light using flavin) domain proteins are an important
family of blue light-sensing proteins which control a wide variety
of functions in cells. The primary light-activated step in the BLUF
domain is not yet established. A number of experimental and theoretical
studies points to a role for photoinduced electron transfer (PET)
between a highly conserved tyrosine and the flavin chromophore to
form a radical intermediate state. Here we investigate the role of
PET in three different BLUF proteins, using ultrafast broadband transient
infrared spectroscopy. We characterize and identify infrared active
marker modes for excited and ground state species and use them to
record photochemical dynamics in the proteins. We also generate mutants
which unambiguously show PET and, through isotope labeling of the
protein and the chromophore, are able to assign modes characteristic
of both flavin and protein radical states. We find that these radical
intermediates are not observed in two of the three BLUF domains studied,
casting doubt on the importance of the formation of a population of
radical intermediates in the BLUF photocycle. Further, unnatural amino
acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines,
thus modifying the driving force for the proposed electron transfer
reaction; the rate changes observed are also not consistent with a
PET mechanism. Thus, while intermediates of PET reactions can be observed
in BLUF proteins they are not correlated with photoactivity, suggesting
that radical intermediates are not central to their operation. Alternative
nonradical pathways including a keto–enol tautomerization induced
by electronic excitation of the flavin ring are considered
Hopf algebras and Markov chains: Two examples and a theory
The operation of squaring (coproduct followed by product) in a combinatorial
Hopf algebra is shown to induce a Markov chain in natural bases. Chains
constructed in this way include widely studied methods of card shuffling, a
natural "rock-breaking" process, and Markov chains on simplicial complexes.
Many of these chains can be explictly diagonalized using the primitive elements
of the algebra and the combinatorics of the free Lie algebra. For card
shuffling, this gives an explicit description of the eigenvectors. For
rock-breaking, an explicit description of the quasi-stationary distribution and
sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes
will only appear on the version on Amy Pang's website, the arXiv version will
not be updated.
Hierarchy measure for complex networks
Nature, technology and society are full of complexity arising from the
intricate web of the interactions among the units of the related systems (e.g.,
proteins, computers, people). Consequently, one of the most successful recent
approaches to capturing the fundamental features of the structure and dynamics
of complex systems has been the investigation of the networks associated with
the above units (nodes) together with their relations (edges). Most complex
systems have an inherently hierarchical organization and, correspondingly, the
networks behind them also exhibit hierarchical features. Indeed, several papers
have been devoted to describing this essential aspect of networks, however,
without resulting in a widely accepted, converging concept concerning the
quantitative characterization of the level of their hierarchy. Here we develop
an approach and propose a quantity (measure) which is simple enough to be
widely applicable, reveals a number of universal features of the organization
of real-world networks and, as we demonstrate, is capable of capturing the
essential features of the structure and the degree of hierarchy in a complex
network. The measure we introduce is based on a generalization of the m-reach
centrality, which we first extend to directed/partially directed graphs. Then,
we define the global reaching centrality (GRC), which is the difference between
the maximum and the average value of the generalized reach centralities over
the network. We investigate the behavior of the GRC considering both a
synthetic model with an adjustable level of hierarchy and real networks.
Results for real networks show that our hierarchy measure is related to the
controllability of the given system. We also propose a visualization procedure
for large complex networks that can be used to obtain an overall qualitative
picture about the nature of their hierarchical structure.Comment: 29 pages, 9 figures, 4 table
- …
