40,746 research outputs found
An investigation of tandem row high head pump inducers Interim report
Streamline calculations for tandem row high head pump inducer
Clustering in Hilbert space of a quantum optimization problem
The solution space of many classical optimization problems breaks up into
clusters which are extensively distant from one another in the Hamming metric.
Here, we show that an analogous quantum clustering phenomenon takes place in
the ground state subspace of a certain quantum optimization problem. This
involves extending the notion of clustering to Hilbert space, where the
classical Hamming distance is not immediately useful. Quantum clusters
correspond to macroscopically distinct subspaces of the full quantum ground
state space which grow with the system size. We explicitly demonstrate that
such clusters arise in the solution space of random quantum satisfiability
(3-QSAT) at its satisfiability transition. We estimate both the number of these
clusters and their internal entropy. The former are given by the number of
hardcore dimer coverings of the core of the interaction graph, while the latter
is related to the underconstrained degrees of freedom not touched by the
dimers. We additionally provide new numerical evidence suggesting that the
3-QSAT satisfiability transition may coincide with the product satisfiability
transition, which would imply the absence of an intermediate entangled
satisfiable phase.Comment: 11 pages, 6 figure
Lacie phase 1 Classification and Mensuration Subsystem (CAMS) rework experiment
An experiment was designed to test the ability of the Classification and Mensuration Subsystem rework operations to improve wheat proportion estimates for segments that had been processed previously. Sites selected for the experiment included three in Kansas and three in Texas, with the remaining five distributed in Montana and North and South Dakota. The acquisition dates were selected to be representative of imagery available in actual operations. No more than one acquisition per biophase were used, and biophases were determined by actual crop calendars. All sites were worked by each of four Analyst-Interpreter/Data Processing Analyst Teams who reviewed the initial processing of each segment and accepted or reworked it for an estimate of the proportion of small grains in the segment. Classification results, acquisitions and classification errors and performance results between CAMS regular and ITS rework are tabulated
Trellis phase codes for power-bandwith efficient satellite communications
Support work on improved power and spectrum utilization on digital satellite channels was performed. Specific attention is given to the class of signalling schemes known as continuous phase modulation (CPM). The specific work described in this report addresses: analytical bounds on error probability for multi-h phase codes, power and bandwidth characterization of 4-ary multi-h codes, and initial results of channel simulation to assess the impact of band limiting filters and nonlinear amplifiers on CPM performance
Baryon resonances and hadronic interactions in a finite volume
In a finite volume, resonances and multi-hadron states are identified by
discrete energy levels. When comparing the results of lattice QCD calculations
to scattering experiments, it is important to have a way of associating the
energy spectrum of the finite-volume lattice with the asymptotic behaviour of
the S-matrix. A new technique for comparing energy eigenvalues with scattering
phase shifts is introduced, which involves the construction of an exactly
solvable matrix Hamiltonian model. The model framework is applied to the case
of decay, but is easily generalized to include
multi-channel scattering. Extracting resonance parameters involves matching the
energy spectrum of the model to that of a lattice QCD calculation. The
resulting fit parameters are then used to generate phase shifts. Using a sample
set of pseudodata, it is found that the extraction of the resonance position is
stable with respect to volume for a variety of regularization schemes, and
compares favorably with the well-known Luescher method. The model-dependence of
the result is briefly investigated.Comment: 7 pages, 3 figures. Talk presented at the 30th International
Symposium on Lattice Field Theory (Lattice 2012), June 24-29, 2012, Cairns,
Australi
Approximating random quantum optimization problems
We report a cluster of results regarding the difficulty of finding
approximate ground states to typical instances of the quantum satisfiability
problem -QSAT on large random graphs. As an approximation strategy, we
optimize the solution space over `classical' product states, which in turn
introduces a novel autonomous classical optimization problem, PSAT, over a
space of continuous degrees of freedom rather than discrete bits. Our central
results are: (i) The derivation of a set of bounds and approximations in
various limits of the problem, several of which we believe may be amenable to a
rigorous treatment. (ii) A demonstration that an approximation based on a
greedy algorithm borrowed from the study of frustrated magnetism performs well
over a wide range in parameter space, and its performance reflects structure of
the solution space of random -QSAT. Simulated annealing exhibits
metastability in similar `hard' regions of parameter space. (iii) A
generalization of belief propagation algorithms introduced for classical
problems to the case of continuous spins. This yields both approximate
solutions, as well as insights into the free energy `landscape' of the
approximation problem, including a so-called dynamical transition near the
satisfiability threshold. Taken together, these results allow us to elucidate
the phase diagram of random -QSAT in a two-dimensional
energy-density--clause-density space.Comment: 14 pages, 9 figure
Trap-assisted tunnelling and Shockley-Read-Hall lifetime of extended defects in In.53Ga.47As p+n junction
Several In.53Ga.47As p+n junctions with various extended defect densities (EDDs) have been grown by metalorganic vapor phase epitaxy (MOVPE), by carefully controlling the growth conditions. After fabrication, T-dependent J-V, C-V and double DLTS (DDLTS) are performed to extract the electrical field dependence of the extended defect levels. From this characterization, it is derived that the extended defects dominate the electrical field enhancement factor Gamma regardless of the value of the EDD and significantly increases the leakage current under reverse bias (i.e., decrease the Shockley-Read-Hall lifetime). These impacts are strongly connected to a "band-like" density of states of extended defects E2 at E-C-0.32 eV by comparing the DDLTS and T-dependent J-V characteristics. On the other hand, the reference sample (without EDs) surprisingly exhibits an even stronger field dependence with lower leakage current. Nevertheless, no straightforward candidate point defects can be found in this sample and the possible explanation are discussed
Counting fermionic zero modes on M5 with fluxes
We study the Dirac equation on an M5 brane wrapped on a divisor in a
Calabi--Yau fourfold in the presence of background flux. We reduce the
computation of the normal bundle U(1) anomaly to counting the solutions of a
finite--dimensional linear system on cohomology. This system depends on the
choice of flux. In an example, we find that the presence of flux changes the
anomaly and allows instanton corrections to the superpotential which would
otherwise be absent.Comment: 14 pages. v2: reference added, typos corrected, few change
- …
