1,018 research outputs found

    A Submillimeter Study of the Star-Forming Region NGC7129

    Get PDF
    New molecular (13CO J=3-2) and dust continuum (450 and 850 micron) SCUBA maps of the NGC7129 star forming region are presented, complemented by C18O J=3-2 spectra at several positions within the mapped region. The maps include the Herbig Ae/Be star LkHalpha 234, the far-infrared source NGC 7129 FIRS2 and several other pre-stellar sources embedded within the molecular ridge. The SCUBA maps help us understand the nature of the pre-main sequence stars in this actively star forming region. A deeply embedded submillimeter source, SMM2, not clearly seen in any earlier data set, is shown to be a pre-stellar core or possibly a protostar. The highest continuum peak emission is identified with the deeply embedded source IRS6, a few arcseconds away from LkHalpha 234, and also responsible for both the optical jet and the molecular outflow. The gas and dust masses are found to be consistent, suggesting little or no CO depletion onto grains. The dust emissivity index is lower towards the dense compact sources, beta ~1 - 1.6, and higher, beta ~ 2.0, in the surrounding cloud, implying small size grains in the PDR ridge, whose mantles have been evaporated by the intense UV radiation.Comment: Accepted by Ap

    The Molecular Gas Environment around Two Herbig Ae/Be Stars: Resolving the Outflows of LkHa 198 and LkHa 225S

    Full text link
    Observations of outflows associated with pre-main-sequence stars reveal details about morphology, binarity and evolutionary states of young stellar objects. We present molecular line data from the Berkeley-Illinois-Maryland Association array and Five Colleges Radio Astronomical Observatory toward the regions containing the Herbig Ae/Be stars LkHa 198 and LkHa 225S. Single dish observations of 12CO 1-0, 13CO 1-0, N2H+ 1-0 and CS 2-1 were made over a field of 4.3' x 4.3' for each species. 12CO data from FCRAO were combined with high resolution BIMA array data to achieve a naturally-weighted synthesized beam of 6.75'' x 5.5'' toward LkHa 198 and 5.7'' x 3.95'' toward LkHa 225S, representing resolution improvements of factors of approximately 10 and 5 over existing data. By using uniform weighting, we achieved another factor of two improvement. The outflow around LkHa 198 resolves into at least four outflows, none of which are centered on LkHa 198-IR, but even at our resolution, we cannot exclude the possibility of an outflow associated with this source. In the LkHa 225S region, we find evidence for two outflows associated with LkHa 225S itself and a third outflow is likely driven by this source. Identification of the driving sources is still resolution-limited and is also complicated by the presence of three clouds along the line of sight toward the Cygnus molecular cloud. 13CO is present in the environments of both stars along with cold, dense gas as traced by CS and (in LkHa 225S) N2H+. No 2.6 mm continuum is detected in either region in relatively shallow maps compared to existing continuum observations.Comment: 14 pages, 10 figures (5 color), accepted for publication in Ap

    Subarcsecond Submillimeter Imaging of the Ultracompact HII Region G5.89-0.39

    Full text link
    We present the first subarcsecond submillimeter images of the enigmatic ultracompact HII region (UCHII) G5.89-0.39. Observed with the SMA, the 875 micron continuum emission exhibits a shell-like morphology similar to longer wavelengths. By using images with comparable angular resolution at five frequencies obtained from the VLA archive and CARMA, we have removed the free-free component from the 875 micron image. We find five sources of dust emission: two compact warm objects (SMA1 and SMA2) along the periphery of the shell, and three additional regions further out. There is no dust emission inside the shell, supporting the picture of a dust-free cavity surrounded by high density gas. At subarcsecond resolution, most of the molecular gas tracers encircle the UCHII region and appear to constrain its expansion. We also find G5.89-0.39 to be almost completely lacking in organic molecular line emission. The dust cores SMA1 and SMA2 exhibit compact spatial peaks in optically-thin gas tracers (e.g. 34SO2), while SMA1 also coincides with 11.9 micron emission. In CO(3-2), we find a high-velocity north/south bipolar outflow centered on SMA1, aligned with infrared H2 knots, and responsible for much of the maser activity. We conclude that SMA1 is an embedded intermediate mass protostar with an estimated luminosity of 3000 Lsun and a circumstellar mass of ~1 Msun. Finally, we have discovered an NH3 (3,3) maser 12 arcsec northwest of the UCHII region, coincident with a 44 GHz CH3OH maser, and possibly associated with the Br gamma outflow source identified by Puga et al. (2006).Comment: 41 pages, 11 figures, published in The Astrophysical Journal (2008) Volume 680, Issue 2, pp. 1271-1288. An error in the registration of the marker positions in Figure 11 has been corrected in this versio

    The Hot Inner Disk of FU Ori

    Full text link
    We have constructed a detailed radiative transfer disk model which reproduces the main features of the spectrum of the outbursting young stellar object FU Orionis from ~ 4000 angstrom, to ~ 8 micron. Using an estimated visual extinction Av~1.5, a steady disk model with a central star mass ~0.3 Msun and a mass accretion rate ~ 2e-4 Msun/yr, we can reproduce the spectral energy distribution of FU Ori quite well. With the mid-infrared spectrum obtained by the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, we estimate that the outer radius of the hot, rapidly accreting inner disk is ~ 1 AU using disk models truncated at this outer radius. Inclusion of radiation from a cooler irradiated outer disk might reduce the outer limit of the hot inner disk to ~ 0.5 AU. In either case, the radius is inconsistent with a pure thermal instability model for the outburst. Our radiative transfer model implies that the central disk temperature Tc > 1000 K out to ~ 0.5 - 1 AU, suggesting that the magnetorotational instability (MRI) can be supported out to that distance. Assuming that the ~ 100 yr decay timescale in brightness of FU Ori represents the viscous timescale of the hot inner disk, we estimate the viscosity parameter (alpha) to be ~ 0.2 - 0.02 in the outburst state, consistent with numerical simulations of MRI in disks. The radial extent of the high mass accretion region is inconsistent with the model of Bell & Lin, but may be consistent with theories incorporating both gravitational instability and MRI.Comment: 32 pages, 10 figures, to appear in the Astrophysical Journa

    Large Area Mapping at 850 Microns. IV. Analysis of the Clump Distribution in the Orion B South Molecular Cloud

    Full text link
    We present results from a survey of a 1300 arcmin^2 region of the Orion B South molecular cloud, including NGC 2024, NGC 2023, and the Horsehead Nebula (B33), obtained using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. Submillimeter continuum observations at 450 microns and 850 microns are discussed. Using an automated algorithm, 57 discrete emission features (``clumps'') are identified in the 850 micron map. The physical conditions within these clumps are investigated under the assumption that the objects are in quasi-hydrostatic equilibrium. The best fit dust temperature for the clumps is found to be T_d = 18 +/- 4 K, with the exception of those associated with the few known far infrared sources residing in NGC 2024. The latter internally heated sources are found to be much warmer. In the region surrounding NGC 2023, the clump dust temperatures agree with clump gas temperatures determined from molecular line excitation measurements of the CO molecule. The bounding pressure on the clumps lies in the range log(k^-1 P cm^3 K^-1) = 6.1 +/- 0.3. The cumulative mass distribution is steep at the high mass end, as is the stellar Initial Mass Function. The distribution flattens significantly at lower masses, with a turn-over around 3 -- 10 M_sun.Comment: 41 pages, 16 figures, accepted by Ap

    A major radio outburst in III Zw 2 with an extremely inverted, millimeter-peaked spectrum

    Full text link
    III Zw 2 is a spiral galaxy with an optical spectrum and faint extended radio structure typical of a Seyfert galaxy, but also with an extremely variable, blazar-like radio core. We have now discovered a new radio flare where the source has brightened more than twenty-fold within less than two years. A broad-band radio spectrum between 1.4 and 666 GHz shows a textbook-like synchrotron spectrum peaking at 43 GHz, with a self-absorbed synchrotron spectral index +2.5 at frequencies below 43 GHz and an optically thin spectral index -0.75 at frequencies above 43 GHz. The outburst spectrum can be well fitted by two homogenous, spherical components with equipartition sizes of 0.1 and 0.2 pc at 43 and 15 GHz, and with magnetic fields of 0.4 and 1 Gauss. VLBA observations at 43 GHz confirm this double structure and these sizes. Time scale arguments suggest that the emitting regions are shocks which are continuously accelerating particles. This could be explained by a frustrated jet scenario with very compact hotspots. Similar millimeter-peaked spectrum (MPS) sources could have escaped our attention because of their low flux density at typical survey frequencies and their strong variability.Comment: ApJ Letters, in press, (AAS)LaTeX, 3 figures, available at http://www2.mpifr-bonn.mpg.de/staff/hfalcke/publications.html#iiizw2 or in a few weeks at http://www.mpifr-bonn.mpg.de/staff/falcke/publications.html#iiizw

    Submillimeter Observations of the Ultraluminous BAL Quasar APM 08279+5255

    Get PDF
    With an inferred bolometric luminosity of 5\times10^{15}{\rm \lsun}, the recently identified z=3.87, broad absorption line quasar APM 08279+5255 is apparently the most luminous object currently known. As half of its prodigious emission occurs in the infrared, APM 08279+5255 also represents the most extreme example of an Ultraluminous Infrared Galaxy. Here, we present new submillimeter observations of this phenomenal object; while indicating that a vast quantity of dust is present, these data prove to be incompatible with current models of emission mechanisms and reprocessing in ultraluminous systems. The influence of gravitational lensing upon these models is considered and we find that while the emission from the central continuum emitting region may be significantly enhanced, lensing induced magnification cannot easily reconcile the models with observations. We conclude that further modeling, including the effects of any differential magnification is required to explain the observed emission from APM 08279+5255.Comment: 12 Pages with Two figures. Accepted for publication in the Astrophysical Journal Letter

    Digging into NGC 6334I(N): Multiwavelength Imaging of a Massive Protostellar Cluster

    Full text link
    We present a high-resolution, multi-wavelength study of the massive protostellar cluster NGC 6334I(N) that combines new spectral line data from the Submillimeter Array (SMA) and VLA with a reanalysis of archival VLA continuum data, 2MASS and Spitzer images. As shown previously, the brightest 1.3 mm source SMA1 contains substructure at subarcsecond resolution, and we report the first detection of SMA1b at 3.6 cm along with a new spatial component at 7 mm (SMA1d). We find SMA1 (aggregate of sources a, b, c, and d) and SMA4 to be comprised of free-free and dust components, while SMA6 shows only dust emission. Our 1.5" resolution 1.3 mm molecular line images reveal substantial hot-core line emission toward SMA1 and to a lesser degree SMA2. We find CH3OH rotation temperatures of 165\pm 9 K and 145\pm 12 K for SMA1 and SMA2, respectively. We estimate a diameter of 1400 AU for the SMA1 hot core emission, encompassing both SMA1b and SMA1d, and speculate that these sources comprise a >800 AU separation binary that may explain the previously-suggested precession of the outflow emanating from the SMA1 region. The LSR velocities of SMA1, SMA2, and SMA4 all differ by 1-2 km/s. Outflow activity from SMA1, SMA2, SMA4, and SMA6 is observed in several molecules including SiO(5--4) and IRAC 4.5 micron emission; 24 micron emission from SMA4 is also detected. Eleven water maser groups are detected, eight of which coincide with SMA1, SMA2, SMA4, and SMA6. We also detect a total of 83 Class I CH3OH 44GHz maser spots which likely result from the combined activity of many outflows. Our observations paint the portrait of multiple young hot cores in a protocluster prior to the stage where its members become visible in the near-infrared.Comment: Accepted to ApJ, 24 pages, a full high resolution version is available at http://www.cv.nrao.edu/~cbrogan/ms.long.pd

    Submillimeter spectroscopy of southern hot cores: NGC6334(I) and G327.3-0.6

    Get PDF
    High-mass star-forming regions are known to have a rich molecular spectrum from many species. Some of the very highly excited lines are emitted from very hot and dense gas close to the central object(s). The physics and chemistry of the inner cores of two high mass star forming regions, NGC6334(I) and G327.3-0.6, shall be characterized. Submillimeter line surveys with the APEX telescope provide spectra which sample many molecular lines at high excitation stages. Partial spectral surveys were obtained, the lines were identified, physical parameters were determined through fitting of the spectra. Both sources show similar spectra that are comparable to that of the only other high mass star forming region ever surveyed in this frequency range}, Orion-KL, but with an even higher line density. Evidence for very compact, very hot sources is found.Comment: APEX A&A special issue, accepte

    Probing the Early Stages of Low-Mass Star Formation in LDN 1689N: Dust and Water in IRAS 16293-2422A, B, and E

    Get PDF
    We present deep images of dust continuum emission at 450, 800, and 850 micron of the dark cloud LDN 1689N which harbors the low-mass young stellar objects (YSOs) IRAS 16293-2422A and B (I16293A and I16293B) and the cold prestellar object I16293E. Toward the positions of I16293A and E we also obtained spectra of CO-isotopomers and deep submillimeter observations of chemically related molecules with high critical densities. To I16293A we report the detection of the HDO 1_01 - 0_00 and H2O 1_10 - 1_01 ground-state transitions as broad self-reversed emission profiles with narrow absorption, and a tentative detection of H2D+ 1_10 - 1_11. To I16293E we detect weak emission of subthermally excited HDO 1_01 - 0_00. Based on this set of submillimeter continuum and line data we model the envelopes around I16293A and E. The density and velocity structure of I16293A is fit by an inside-out collapse model, yielding a sound speed of a=0.7 km/s, an age of t=(0.6--2.5)e4 yr, and a mass of 6.1 Msun. The density in the envelope of I16293E is fit by a radial power law with index -1.0+/-0.2, a mass of 4.4 Msun, and a constant temperature of 16K. These respective models are used to study the chemistry of the envelopes of these pre- and protostellar objects. The [HDO]/[H2O] abundance ratio in the warm inner envelope of I16293A of a few times 1e-4 is comparable to that measured in comets. This supports the idea that the [HDO]/[H2O] ratio is determined in the cold prestellar core phase and conserved throughout the formation process of low-mass stars and planets.Comment: 61 pages, 17 figures. Accepted for publication in ApJ. To get Fig. 13: send email to [email protected]
    • 

    corecore