14 research outputs found
Internal structure of the Late Triassic Central Patagonian batholith at Gastre, southern Argentina: implications for pluton emplacement and the Gastre fault system
The Central Patagonian batholith (CPB) comprises two Late Triassic calcalkaline plutonic suites (the Gastre superunit of 221 ± 2 Ma and the Lipetrén superunit of 215 ± 1 Ma) which have been interpreted as a record of major dextral motion along the transcontinental NW-SE-striking subvertical Gastre fault system in Jurassic times. We performed a detailed study of the internal structure of the CPB through structural and anisotropy of magnetic susceptibility (AMS) techniques. The Gastre superunit reveals a very consistent pattern of NW-SE-striking steeply dipping magmatic foliations. Tectonic fabrics within the CPB are scarce and generally parallel to the magmatic fabrics. The magmatic and solid-state lineations within the CPB are steeply, intermediately, or shallowly plunging. The combination of flattened magmatic and solid-state fabrics with subvertical orientations and with steep to shallow lineations, together with the kinematic indicators in two mylonite belts with suspected CPB protoliths, suggests that the Gastre superunit was emplaced within a sinistral transpressive regime. The shallower stocks of the Lipetrén superunit are more isotropic and have magmatic fabrics associated with magma chamber dynamics. The deformation of the CPB is coaxial with the late Paleozoic deformation in the hosting Calcatapul Formation. The late Paleozoic deformation in the North Patagonian Massif generated widespread NW-SE subvertical fractures which could have aided the emplacement of the CPB. The internal structure of the CPB does not support a model of dextral strike-slip movements on major Jurassic faults.Contiene material suplementario.Facultad de Ciencias Exacta
Internal structure of the Late Triassic Central Patagonian batholith at Gastre, southern Argentina: implications for pluton emplacement and the Gastre fault system
The Central Patagonian batholith (CPB) comprises two Late Triassic calcalkaline plutonic suites (the Gastre superunit of 221 ± 2 Ma and the Lipetrén superunit of 215 ± 1 Ma) which have been interpreted as a record of major dextral motion along the transcontinental NW-SE-striking subvertical Gastre fault system in Jurassic times. We performed a detailed study of the internal structure of the CPB through structural and anisotropy of magnetic susceptibility (AMS) techniques. The Gastre superunit reveals a very consistent pattern of NW-SE-striking steeply dipping magmatic foliations. Tectonic fabrics within the CPB are scarce and generally parallel to the magmatic fabrics. The magmatic and solid-state lineations within the CPB are steeply, intermediately, or shallowly plunging. The combination of flattened magmatic and solid-state fabrics with subvertical orientations and with steep to shallow lineations, together with the kinematic indicators in two mylonite belts with suspected CPB protoliths, suggests that the Gastre superunit was emplaced within a sinistral transpressive regime. The shallower stocks of the Lipetrén superunit are more isotropic and have magmatic fabrics associated with magma chamber dynamics. The deformation of the CPB is coaxial with the late Paleozoic deformation in the hosting Calcatapul Formation. The late Paleozoic deformation in the North Patagonian Massif generated widespread NW-SE subvertical fractures which could have aided the emplacement of the CPB. The internal structure of the CPB does not support a model of dextral strike-slip movements on major Jurassic faults.Contiene material suplementario.Facultad de Ciencias Exacta
Internal structure of the Late Triassic Central Patagonian batholith at Gastre, southern Argentina: implications for pluton emplacement and the Gastre fault system
The Central Patagonian batholith (CPB) comprises two Late Triassic calcalkaline plutonic suites (the Gastre superunit of 221 ± 2 Ma and the Lipetrén superunit of 215 ± 1 Ma) which have been interpreted as a record of major dextral motion along the transcontinental NW-SE-striking subvertical Gastre fault system in Jurassic times. We performed a detailed study of the internal structure of the CPB through structural and anisotropy of magnetic susceptibility (AMS) techniques. The Gastre superunit reveals a very consistent pattern of NW-SE-striking steeply dipping magmatic foliations. Tectonic fabrics within the CPB are scarce and generally parallel to the magmatic fabrics. The magmatic and solid-state lineations within the CPB are steeply, intermediately, or shallowly plunging. The combination of flattened magmatic and solid-state fabrics with subvertical orientations and with steep to shallow lineations, together with the kinematic indicators in two mylonite belts with suspected CPB protoliths, suggests that the Gastre superunit was emplaced within a sinistral transpressive regime. The shallower stocks of the Lipetrén superunit are more isotropic and have magmatic fabrics associated with magma chamber dynamics. The deformation of the CPB is coaxial with the late Paleozoic deformation in the hosting Calcatapul Formation. The late Paleozoic deformation in the North Patagonian Massif generated widespread NW-SE subvertical fractures which could have aided the emplacement of the CPB. The internal structure of the CPB does not support a model of dextral strike-slip movements on major Jurassic faults.Contiene material suplementario.Facultad de Ciencias Exacta
Thrust-related metamorphism in Carboniferous slates of southern Patagonia (South America): the fate of forearc successions
Measurements of Kübler Index
Lower Jurassic to Early Paleogene Intraplate Contraction in Central Patagonia
Breakup and dispersion stages of Gondwana were ruled by crustal extension. In Patagonia, this regime was associated with the opening of extensional basins from the Jurassic onwards, a process that was interrupted by the Andean orogeny. New data generated from the hydrocarbon exploration allowed identifying Jurassic to Eocene contractional deformations, previously not registered in central Patagonia. We summarize in this chapter evidence for five compressional events intercalated with the extensional regime that affected central Patagonia from the Early Jurassic to the Paleogene. These events, denominated ?C1?, ?C2?, ?C3?, ?C4? and ?C5? acted diachronicronously producing tectonic inversion of the Jurassic-Cretaceous depocenters. The first three contractional pulses occurred during the Jurassic while the two remaining were late Lower Cretaceous and early Paleogene. The origin of this compressive activity would be linked to different processes that comprehend from thermal weakening of the crust produced by expansion of the thermal anomaly of Karoo in Mid to Late Jurassic times; the southwards continental drift since the Early Jurassic; the ridge-push generated by the opening of Wedell Sea since Mid Jurassic times; and two mid ocean ridge collisions during the Cretaceous.Fil: Navarrete Granzotto, César Rodrigo. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gianni, Guido Martin. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Echaurren Gonzalez, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin
A cross-sectional survey to investigate the quality of care in Tuscan (Italy) nursing homes: the structural, process and outcome indicators of nutritional care
BACKGROUND: Previous studies have investigated process and structure indicators of nutritional care as well as their use in nursing homes (NHs), but the relative weight of these indicators in predicting the risk of malnutrition remains unclear. Aims of the present study are to describe the quality indicators of nutritional care in older residents in a sample of NHs in Tuscany, Italy, and to evaluate the predictors of protein-energy malnutrition risk. METHODS: A cross-sectional survey was conducted in 67 NHs. Information was collected to evaluate quality indicators of nutritional care and the individual risk factors for malnutrition, which was assessed using the Malnutrition Universal Screening Tool. A multilevel model was used to analyse the association between risk and predictors. RESULTS: Out of 2395 participants, 23.7 % were at high, 11 % at medium, and 65.3 % at low risk for malnutrition. Forty-two percent of the NHs had only a personal scale to weigh residents; 88 % did not routinely use a screening test/tool for malnutrition; 60 % used some standardized approach for weight measurement; 43 % did not assess the severity of dysphagia; 12 % were not staffed with dietitians. Patients living in NHs where a chair or platform scale was available had a significantly lower risk of malnutrition (OR = 0.73; 95 % CI = 0.56–0.94). None of the other structural or process quality indicators showed a statistically significant association with malnutrition risk. CONCLUSIONS: Of all the process and structural indicators considered, only the absence of an adequate scale to weigh residents predicted the risk of malnutrition, after adjusting for case mix. These findings prompt the conduction of further investigations on the effectiveness of structural and process indicators that are used to describe quality of nutritional care in NHs