9,275 research outputs found

    Development of an airborne ice sounding radar front-end

    Get PDF

    An Overview of Mechanical Tests for Polymeric Biomaterial Scaffolds Used in Tissue Engineering

    Get PDF
    Mechanical characterization of polymeric biomaterial scaffolds is essential to allow biomaterials that interface with tissues and tissue engineered constructs to be developed with appropriate mechanical strength. However, the fragility of these materials makes their mechanical characterization in a quantitative manner highly challenging. Here we report an overview of testing techniques for the characterization of mechanical properties of films, membranes, hydrogels and fibers commonly used as scaffolds in tissue engineering applications

    Slanted Stixels: A way to represent steep streets

    Get PDF
    This work presents and evaluates a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced in order to significantly reduce the computational complexity of the Stixel algorithm, and then achieve real-time computation capabilities. The idea is to first perform an over-segmentation of the image, discarding the unlikely Stixel cuts, and apply the algorithm only on the remaining Stixel cuts. This work presents a novel over-segmentation strategy based on a Fully Convolutional Network (FCN), which outperforms an approach based on using local extrema of the disparity map. We evaluate the proposed methods in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.Comment: Journal preprint (published in IJCV 2019: https://link.springer.com/article/10.1007/s11263-019-01226-9). arXiv admin note: text overlap with arXiv:1707.0539

    Fast, pseudo-continuous arterial spin labeling for functional imaging using a two-coil system

    Full text link
    A fast, two-coil, pseudo-continuous labeling scheme is presented. This new scheme permits the collection of a multislice subtraction pair in <3 s, depending on the subject's arterial transit times. The method consists of acquiring both control and tag images immediately after a labeling period that matches the arterial transit time. The theoretical basis of the technique, and simulations of the signal during changes in both transit time and perfusion are presented. Experimental data from functional imaging experiments were collected to demonstrate the technique and its characteristics. Magn Reson Med 51:577–585, 2004. © 2004 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34929/1/10733_ftp.pd

    Na+/K+-ATPase is a new interacting partner for the neuronal glycine transporter GlyT2 that downregulates its expression in vitro and in vivo

    Get PDF
    The neuronal glycine transporter GlyT2 plays a fundamental role in the glycinergic neurotransmission by recycling the neurotransmitter to the presynaptic terminal. GlyT2 is the main supplier of glycine for vesicle refilling, a process that is absolutely necessary to preserve quantal glycine content in synaptic vesicles. Alterations in GlyT2 activity modify glycinergic neurotransmission and may underlie several neuromuscular disorders, such as hyperekplexia, myoclonus, dystonia, and epilepsy. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans and produce congenital muscular dystonia type 2 (CMD2) in Belgian Blue cattle. GlyT2 function is strictly coupled to the sodium electrochemical gradient actively generated by the Na+/K+-ATPase (NKA). GlyT2 cotransports 3Na+/Cl-/glycine generating large rises of Na+ inside the presynaptic terminal that must be efficiently reduced by the NKA to preserve Na+ homeostasis. In this work, we have used high-throughput mass spectrometry to identify proteins interacting with GlyT2 in the CNS. NKA was detected as a putative candidate and through reciprocal coimmunoprecipitations and immunocytochemistry analyses the association between GlyT2 and NKA was confirmed. NKA mainly interacts with the raft-associated active pool of GlyT2, and low and high levels of the specific NKA ligand ouabain modulate the endocytosis and total expression of GlyT2 in neurons. The ouabain-mediated downregulation of GlyT2 also occurs in vivo in two different systems: zebrafish embryos and adult rats, indicating that this NKA-mediated regulatory mechanism is evolutionarily conserved and may play a relevant role in the physiological control of inhibitory glycinergic neurotransmission

    Phase IV open-label study of the efficacy and safety of deferasirox after allogeneic stem cell transplantation

    Get PDF
    This is the first prospective study of deferasirox in adult allogeneic hematopoietic stem cell transplant recipients with transfusional iron overload in hematologic malignancies. Patients at least six months post transplant were treated with deferasirox at a starting dose of 10 mg/kg/day for 52 weeks or until serum ferritin was less than 400 ng/mL on two consecutive occasions. Thirty patients were enrolled and 22 completed the study. A significant reduction from baseline in median serum ferritin and in liver iron concentration at 52 weeks was observed in the overall population: from 1440 to 755.5 ng/mL (P=0.002) and from 14.5 to 4.6 mg Fe/g dw (P=0.0007), respectively. Reduction in serum ferritin in patients who did not discontinue deferasirox therapy was significantly greater than that found in those who prematurely discontinued the treatment (from 1541 to 581 ng/mL vs. from 1416 to 1486 ng/mL; P=0.008). Drug-related adverse events, reported in 17 patients (56.7%), were mostly mild to moderate in severity. There were no drug-related serious adverse events. Twelve patients (40.0%) showed an increase of over 33% in serum creatinine compared to baseline and greater than the upper limit of normal on two consecutive visits. Two patients (6.7%) with active graft-versus-host disease showed an increase in alanine aminotransferase exceeding 10 times upper limit of normal; both resolved. In this prospective study, deferasirox provided a significant reduction in serum ferritin and liver iron concentration over one year of treatment in allogeneic hematopoietic stem cell transplant recipients with iron overload. In addition, the majority of adverse events related to deferasirox were mild or moderate in severity. (clinicaltrials.gov identifier:01335035)

    Quantification of perfusion fMRI using a numerical model of arterial spin labeling that accounts for dynamic transit time effects

    Full text link
    A new approach to modeling the signal observed in arterial spin labeling (ASL) experiments during changing perfusion conditions is presented in this article. The new model uses numerical methods to extend first-order kinetic principles to include the changes in arrival time of the arterial tag that occur during neuronal activation. Estimation of the perfusion function from the ASL signal using this model is also demonstrated. The estimation algorithm uses a roughness penalty as well as prior information. The approach is demonstrated in numerical simulations and human experiments. The approach presented here is particularly suitable for fast ASL acquisition schemes, such as turbo continuous ASL (Turbo-CASL), which allows subtraction pairs to be acquired in less than 3 s but is sensitive to arrival time changes. This modeling approach can also be extended to other acquisition schemes. Magn Reson Med, 2005. © 2005 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48765/1/20613_ftp.pd

    Percutaneous treatment with Mitraclip for functional mitral regurgitation: medium-term follow up according to left ventricular function

    Get PDF
    Background: Functional mitral regurgitation (FMR) is a bad prognosis condition despite optimal medical treatment. Nowadays there is an open debate about the surgical versus percutaneous treatment. The main objective of this study is to evaluate the mid-term follow up clinical outcomes of patients with FMR treated with MitraClip((R)) system, according to their left ventricular ejection fraction (LVEF). Methods: Data was obtained from two experienced centers in transcatheter mitral valve repair (TMVR). All consecutive cases of severe FMR undergoing TMVR in both centers with the same inclusion criteria were included prospectively in this study and followed-up. Periodical follow-ups with clinical and echocardiographic evaluation were scheduled from the baseline procedure, at 3 months and then yearly. Results: From October 2015 to October 2019, a total of 119 patients with FMR at 2 centers in Spain underwent TMVR with the MitraClip((R)) procedure and were included in this study. The mean age was 73.8+/-8.9 years old and 32 patients (26.9%) were female. A 39.5% of cases [47] had a LVEF 30% (group 2). There was a similar distribution in cardiovascular risk factors, age and other diseases. All MitraClip((R)) implantations were elective and procedural success was achieved in 110 patients (92.4%) with a similar distribution between the groups. There were no differences in procedural time and the number of implanted clips. The median follow-up was 22.6 months (IQR, 11.43-34.98 months). The primary combined endpoint occurred in the 41.6% of the global cohort, 57.5% in group 1 and 30.99% in group 2 (P=0.036). LVEF was associated to the main event in the multivariate analysis (HR 2.09, 95% CI: 1.12-3.89; P=0.02). Conclusions: The MitraClip edge-to-edge technique is a safe and effective procedure for the treatment of FMR. In this study, patients with LVEF >30% treated with Mitraclip presented better clinical cardiovascular outcomes than those with a LVEF </=30%. Regardless clinical outcomes, at the end of the follow-up, there was a sustained reduction in MR grades and an important improvement in NYHA functional class

    Ventricular arrhythmias in patients with functional mitral regurgitation and implantable cardiac devices: implications of mitral valve repair with Mitraclip

    Get PDF
    Background: Limited information has been reported regarding the impact of percutaneous mitral valve repair (PMVR) on ventricular arrhythmic (VA) burden. The aim of this study was to address the incidence of VA and appropriate antitachycardia implantable cardiac defibrillator (ICD) therapies before and after PMVR. Methods: We retrospectively analyzed all consecutive patients with heart failure with reduce left ventricular ejection fraction (LVEF), functional mitral regurgitation (FMR) grade 3+ or 4+ and an active ICD or cardiac resynchronizer who underwent PMVR in any of the eleven recruiting centers. Only patients with complete available device VA monitoring from one-year before to one year after PMVR were included. Baseline clinical and echocardiographic characteristics were collected before PMVR and at 12-months follow-up. Results: Ninety-three patients (68.2+/-10.9 years old, male 88.2%) were enrolled. PMVR was successfully performed in all patients and device success at discharge was 91.4%. At 12-month follow-up, we observed a significant reduction in mitral regurgitation severity, NT-proBNP and prevalence of severe pulmonary hypertension and severe kidney disease. Patients also referred a significant improvement in NYHA functional class and showed a non-significant trend to reserve left ventricular remodeling. After PMVR a significant decrease in the incidence of non-sustained ventricular tachycardia (VT) (5.0+/-17.8 vs. 2.7+/-13.5, P=0.002), sustained VT or ventricular fibrillation (0.9+/-2.5 vs. 0.5+/-2.9, P=0.012) and ICD antitachycardia therapies (2.5+/-12.0 vs. 0.9+/-5.0, P=0.033) were observed. Conclusions: PMVR was related to a reduction in arrhythmic burden and ICD therapies in our cohort

    Results of the engineering run of the coherent neutrino nucleus interaction experiment (CONNIE)

    Get PDF
    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below2 e RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.Fil: Aguilar Arevalo, A.. Universidad Nacional Autónoma de México; MéxicoFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; ArgentinaFil: Bonifazi, C.. Universidade Federal do Rio de Janeiro; BrasilFil: Butner, M.. Fermi National Accelerator Laboratory; Estados UnidosFil: Cancelo, G.. Fermi National Accelerator Laboratory; Estados UnidosFil: Castañeda Vazquez, A.. Universidad Nacional Autónoma de México; MéxicoFil: Cervantes Vergara, B.. Universidad Nacional Autónoma de México; MéxicoFil: Chavez, C. R.. Universidad Nacional de Asunción; ParaguayFil: Da Motta, H.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: D'Olivo, J. C.. Universidad Nacional Autónoma de México; MéxicoFil: Dos Anjos, J.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Estrada, J.. Fermi National Accelerator Laboratory; Estados UnidosFil: Fernández Moroni, Guillermo. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ford, R.. Fermi National Accelerator Laboratory; Estados UnidosFil: Foguel, A.. Centro Brasileiro de Pesquisas Físicas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Hernandez Torres, K. P.. Universidad Nacional Autónoma de México; MéxicoFil: Izraelevitch, F.. Fermi National Accelerator Laboratory; Estados UnidosFil: Kavner, A.. University of Michigan; Estados UnidosFil: Kilminster, B.. Universitat Zurich; SuizaFil: Kuk, K.. Fermi National Accelerator Laboratory; Estados UnidosFil: Lima Jr, H. P.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Makler, M.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Molina, J.. Universidad Nacional de Asunción; ParaguayFil: Moreno Granados, G.. Universidad Nacional Autónoma de México; MéxicoFil: Moro, Juan Manuel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; ArgentinaFil: Sofo Haro, Miguel Francisco. Comision Nacional de Energia Atomica. Gerencia D/area de Energia Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tiffenberg, Javier Sebastian. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trillaud, F.. Universidad Nacional Autónoma de México; MéxicoFil: Wagner, S.. Centro Brasileiro de Pesquisas Físicas; Brasil. Pontificia Universidade Católica do Rio Grande do Sul; Brasi
    corecore