55 research outputs found

    Bone metastases in the era of targeted treatments : insights from molecular biology

    Get PDF
    Bone metastases remain a common feature of advanced cancers and are associated with significant morbidity and mortality. Recent research has identified promising novel treatment targets to improve current treatment strategies for bone metastatic disease. This review summarizes the well-known and recently discovered molecular biology pathways in bone that govern normal physiological remodeling or drive the pathophysiological changes observed when bone metastases are present. In the rapidly changing world of targeted cancer treatments, it is important to recognize the specific treatment effects induced in bone by these agents and the potential impact on common imaging strategies. The osteoclastic targets (bisphosphonates, LGR4, RANKL, mTOR, MET-VEGFR, cathepsin K, Src, Dock 5) and the osteoblastic targets (Wnt and endothelin) are discussed, and the emerging field of osteo-immunity is introduced as potential future therapeutic target. Finally, a summary is provided of available trial data for agents that target these pathways and that have been assessed in patients. The ultimate goal of research into novel pathways and targets involved in the tumor-bone microenvironment is to tackle one of the great remaining unmet needs in oncology, that is finding a cure for bone metastatic disease

    Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors

    Get PDF
    Background:The mTOR-inhibitor everolimus improves progression-free survival in advanced pancreatic neuroendocrine tumours (PNETs). However, adaptive resistance to mTOR inhibition is described.Methods:QGP-1 and BON-1, two human PNET cell lines, were cultured with increasing concentrations of everolimus up to 22 weeks to reach a dose of 1 μM everolimus, respectively, 1000-fold and 250-fold initial IC 50. Using total DNA content as a measure of cell number, growth inhibitory dose-response curves of everolimus were determined at the end of resistance induction and over time after everolimus withdrawal. Response to ATP-competitive mTOR inhibitors OSI-027 and AZD2014, and PI3K-mTOR inhibitor NVP-BEZ235 was studied. Gene expression of 10 PI3K-Akt-mTOR pathway-related genes was evaluated using quantitative real-time PCR (RT-qPCR).Results:Long-term everolimus-treated BON-1/R and QGP-1/R showed a significant reduction in everolimus sensitivity. During a drug holiday, gradual return of everolimus sensitivity in BON-1/R and QGP-1/R led to complete reversal of resistance after 10-12 weeks. Treatment with AZD2014, OSI-027 and NVP-BEZ235 had an inhibitory effect on cell proliferation in both sensitive and resistant cell lines. Gene expression in BON-1/R revealed downregulation of MTOR, RICTOR, RAPTOR, AKT and HIF1A, whereas 4EBP1 was upregulated. In QGP-1/R, a downregulation of HIF1A and an upregulation of ERK2 were observed.Conclusions:Long-term everolimus resistance was induced in two human PNET cell lines. Novel PI3K-AKT-mTOR pathway-targeting drugs can overcome everolimus resistance. Differential gene expression profiles suggest different mechanisms of everolimus resistance in BON-1 and QGP-1

    Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows

    Get PDF
    Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed

    Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death

    Get PDF
    BH3 mimetics have been proposed as new anticancer therapeutics. They target anti-apoptotic Bcl-2 proteins, up-regulation of which has been implicated in the resistance of many cancer cells, particularly leukemia and lymphoma cells, to apoptosis. Using probabilistic computational modeling of the mitochondrial pathway of apoptosis, verified by single-cell experimental observations, we develop a model of Bcl-2 inhibition of apoptosis. Our results clarify how Bcl-2 imparts its anti-apoptotic role by increasing the time-to-death and cell-to-cell variability. We also show that although the commitment to death is highly impacted by differences in protein levels at the time of stimulation, inherent stochastic fluctuations in apoptotic signaling are sufficient to induce cell-to-cell variability and to allow single cells to escape death. This study suggests that intrinsic cell-to-cell stochastic variability in apoptotic signaling is sufficient to cause fractional killing of cancer cells after exposure to BH3 mimetics. This is an unanticipated facet of cancer chemoresistance.Comment: 11 pages, In pres

    Personality Traits and Behavioral Syndromes in Differently Urbanized Populations of House Sparrows (Passer domesticus)

    Get PDF
    Urbanization creates novel environments for wild animals where selection pressures may differ drastically from those in natural habitats. Adaptation to urban life involves changes in various traits, including behavior. Behavioral traits often vary consistently among individuals, and these so-called personality traits can be correlated with each other, forming behavioral syndromes. Despite their adaptive significance and potential to act as constraints, little is known about the role of animal personality and behavioral syndromes in animals' adaptation to urban habitats. In this study we tested whether differently urbanized habitats select for different personalities and behavioral syndromes by altering the population mean, inter-individual variability, and correlations of personality traits. We captured house sparrows (Passer domesticus) from four different populations along the gradient of urbanization and assessed their behavior in standardized test situations. We found individual consistency in neophobia, risk taking, and activity, constituting three personality axes. On the one hand, urbanization did not consistently affect the mean and variance of these traits, although there were significant differences between some of the populations in food neophobia and risk taking (both in means and variances). On the other hand, both urban and rural birds exhibited a behavioral syndrome including object neophobia, risk taking and activity, whereas food neophobia was part of the syndrome only in rural birds. These results indicate that there are population differences in certain aspects of personality in house sparrows, some of which may be related to habitat urbanization. Our findings suggest that urbanization and/or other population-level habitat differences may not only influence the expression of personality traits but also alter their inter-individual variability and the relationships among them, changing the structure of behavioral syndromes

    Targeted antiangiogenic agents in combination with cytotoxic chemotherapy in preclinical and clinical studies in sarcoma

    Get PDF
    Sarcomas are a heterogeneous group of mesenchymal malignancies. In recent years, studies have demonstrated that inhibition of angiogenic pathways or disruption of established vasculature can attenuate the growth of sarcomas. However, when used as monotherapy in the clinical setting, these targeted antiangiogenic agents have only provided modest survival benefits in some sarcoma subtypes, and have not been efficacious in others. Preclinical and early clinical data suggest that the addition of conventional chemotherapy to antiangiogenic agents may lead to more effective therapies for patients with these tumors. In the current review, the authors summarize the available evidence and possible mechanisms supporting this approach
    corecore