34 research outputs found

    Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals

    Get PDF
    Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors

    Large-scale exome-wide association analysis identifies loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases

    Get PDF
    White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3 UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases

    Tolerance of P. pseudoalcaligenes KF707 to metals, PCBs, and chlorobenzoates: effects on chemotaxis, biofilm and planktonic cells

    No full text
    La pubblicazione analizza gli effetti di composti tossici organici e inorganici sulla formazione dei biofilms e sulle cellule in sospensione del batterio P. pseudoalcaligenes KF70

    Temporal Stability of Urinary Cadmium in Samples Collected Several Years Apart in a Population of Older Persons

    No full text
    ObjectivesThere is growing evidence that urine cadmium is a temporally stable biomarker indicative of long-term cadmium exposure; however questions remain with regard to generalizability to older persons, the impact of changes in smoking behavior, and the degree of temporal stability when repeat sample collection spans years instead of weeks or months.MethodsUsing archived samples from cohorts of older men (Osteoporotic Fractures in Men (MrOS-US)) and women (Study of Osteoporotic Fractures (SOF)) (mean age = 80 at study visit 2), we analyzed two morning urine samples each from 39 men and 18 women with a diverse self-reported smoking history. For MrOS, samples were collected approximately 6 years apart, and 4 years apart for SOF. Intra-class correlations were computed to assess temporal stability, and adjusted for age and body mass index.ResultsThe median creatinine-adjusted urinary cadmium levels (0.39 μg/g for men, 0.89 μg/g for women) were similar to levels expected for these age/sex groups in the US according to the National Health and Nutrition Examination Survey. The overall intra-class correlation was high (ICC = 0.85; 95% CI: 0.76-0.91) and similar between cohorts (MrOS: ICC = 0.74; 95% CI: 0.58-0.86; SOF: ICC = 0.81; 95% CI: 0.59-0.93), but slightly lower among those who stopped smoking between visits of sample collection (ICC = 0.64; 95% CI: 0.31-0.87) or among former smokers who quit prior to the first sample collection (ICC = 0.68; 95% CI: 0.25-0.93).ConclusionsWe report good-to-excellent reproducibility of urine cadmium using morning urine samples collected 4-6 years apart from older men and women, but slightly lower correlations among those with a history of smoking. Single measures of urine cadmium are a reliable biomarker in older men and women

    Distinctive Profile of IsomiR Expression and Novel MicroRNAs in Rat Heart Left Ventricle

    Get PDF
    MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486
    corecore