462 research outputs found

    Pastoralists do plan! Community-led land use planning in the pastoral areas of Ethiopia

    Get PDF
    This paper consolidates a set of case studies which document how pastoralists plan land and resource use in pastoral and agro-pastoral areas of Ethiopia. These case studies are drawn from the regional states of Afar, Somali, Southern Nations, Nationalities, and Peoples (SNNP), Oromia, and Gambella. They describe not only why, how, and when pastoralists plan, but also the management and governance structures that control planning processes and the later implementation of the plans. By doing this, the paper provides guidance on how best such planning processes can be supported, and how they can be integrated with and/or built on by other planning processes such as those led by government

    Global governance approaches to addressing illegal logging: Uptake and lessons learned

    Get PDF
    One of the most challenging tasks facing development agencies, trade ministries, environmental groups, social activists and forest-focused business interests seeking to ameliorate illegal logging and related timber trade is to identify and nurture promising global governance interventions capable of helping improve compliance to governmental policies and laws at national, subnational and local levels. This question is especially acute for developing countries constrained by capacity challenges and “weak states” (Risse, 2011). This chapter seeks to shed light on this task by asking four related questions: How do we understand the emergence of illegal logging as a matter of global interest? What are the types of global interventions designed to improve domestic legal compliance? How have individual states responded to these global efforts? What are the prospects for future impacts and evolution? We proceed in the following steps. Following this introduction, step two reviews how the problem of “illegal logging” emerged on the international agenda. Step three reviews leading policy interventions that resulted from this policy framing. Step four reviews developments in selected countries/regions around the world according to their place on the global forest products supply chain: consumers (United States, Europe and Australia); middle of supply chain manufacturers (China and South Korea) and producers (Russia; Indonesia; Brazil and Peru; Ghana, Cameroon and the Republic of Congo). We conclude by reflecting on key trends that emerge from this review relevant for understanding the conditions through which legality might make a difference in addressing critical challenges

    How can onchocerciasis elimination in Africa be accelerated? Modelling the impact of increased ivermectin treatment frequency and complementary vector control

    Get PDF
    Background: Great strides have been made toward onchocerciasis elimination by mass drug administration (MDA) of ivermectin. Focusing on MDA-eligible areas, we investigated where the elimination goal can be achieved by 2025 by continuation of current practice (annual MDA with ivermectin) and where intensification or additional vector control is required. We did not consider areas hypoendemic for onchocerciasis with loiasis coendemicity where MDA is contraindicated. Methods: We used 2 previously published mathematical models, ONCHOSIM and EPIONCHO, to simulate future trends in microfilarial prevalence for 80 different settings (defined by precontrol endemicity and past MDA frequency and coverage) under different future treatment scenarios (annual, biannual, or quarterly MDA with different treatment coverage through 2025, with or without vector control strategies), assessing for each strategy whether it eventually leads to elimination. Results: Areas with 40%–50% precontrol microfilarial prevalence and ≄10 years of annual MDA may achieve elimination with a further 7 years of annual MDA, if not achieved already, according to both models. For most areas with 70%–80% precontrol prevalence, ONCHOSIM predicts that either annual or biannual MDA is sufficient to achieve elimination by 2025, whereas EPIONCHO predicts that elimination will not be achieved even with complementary vector control. Conclusions: Whether elimination will be reached by 2025 depends on precontrol endemicity, control history, and strategies chosen from now until 2025. Biannual or quarterly MDA will accelerate progress toward elimination but cannot guarantee it by 2025 in high-endemicity areas. Long-term concomitant MDA and vector control for high-endemicity areas might be useful

    Broadly Sampled Multigene Trees of Eukaryotes

    Get PDF
    Background. Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the \u27Amoebozoa\u27, \u27Chromalveolata\u27, \u27Excavata\u27, \u27Opisthokonta\u27, \u27Plantae\u27, and \u27Rhizaria\u27. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1) to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2) to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches. Results. The inferred trees reveal strong support for many clades that also have defining ultrastructural or molecular characters. In contrast, we find limited to no support for most of the putative supergroups as only the \u27Opisthokonta\u27 receive strong support in our analyses. The supergroup \u27Amoebozoa\u27 has only moderate support, whereas the \u27Chromalveolata\u27, \u27Excavata\u27, \u27Plantae\u27, and \u27Rhizaria\u27 receive very limited or no support. Conclusion. Our analytical approach substantiates the power of increased taxon sampling in placing diverse eukaryotic lineages within well-supported clades. At the same time, this study indicates that the six supergroup hypothesis of higher-level eukaryotic classification is likely premature. The use of a taxon-rich data set with 105 lineages, which still includes only a small fraction of the diversity of microbial eukaryotes, fails to resolve deeper phylogenetic relationships and reveals no support for four of the six proposed supergroups. Our analyses provide a point of departure for future taxon- and gene-rich analyses of the eukaryotic tree of life, which will be critical for resolving their phylogenetic interrelationships

    Mechanisms for the Intracellular Manipulation of Organelles by Conventional Electroporation

    Get PDF
    Conventional electroporation (EP) changes both the conductance and molecular permeability of the plasma membrane (PM) of cells and is a standard method for delivering both biologically active and probe molecules of a wide range of sizes into cells. However, the underlying mechanisms at the molecular and cellular levels remain controversial. Here we introduce a mathematical cell model that contains representative organelles (nucleus, endoplasmic reticulum, mitochondria) and includes a dynamic EP model, which describes formation, expansion, contraction, and destruction for the plasma and all organelle membranes. We show that conventional EP provides transient electrical pathways into the cell, sufficient to create significant intracellular fields. This emerging intracellular electrical field is a secondary effect due to EP and can cause transmembrane voltages at the organelles, which are large enough and long enough to gate organelle channels, and even sufficient, at some field strengths, for the poration of organelle membranes. This suggests an alternative to nanosecond pulsed electric fields for intracellular manipulations.National Science Foundation (U.S.) (NSF Graduate Research Fellowship)National Institutes of Health (U.S.) (grant No. R01-GM63857)Aegis Industries, Inc

    The Society of Vascular and Interventional Neurology (SVIN) Mechanical Thrombectomy Registry: Methods and Primary Results

    Get PDF
    Background A better understanding of real‐world practice patterns in the endovascular treatment for large vessel occlusion acute ischemic stroke is needed. Here, we report the methods and initial results of the Society of Vascular and Interventional Neurology (SVIN) Registry. Methods The SVIN Registry is an ongoing prospective, multicenter, observational registry capturing patients with large vessel occlusion acute ischemic stroke undergoing endovascular treatment since November 2018. Participating sites also contributed pre‐SVIN Registry data collected per institutional prospective registries, and these data were combined with the SVIN Registry in the SVIN Registry+ cohort. Results There were 2088 patients treated across 11 US centers included in the prospective SVIN Registry and 5372 in SVIN Registry+. In the SVIN Registry cohort, the median number of enrollments per institution was 160 [interquartile range 53–243]. Median age was 67 [58–79] years, 49% were women, median National Institutes of Health Stroke Scale 16 [10–21], Alberta stroke program early CT score 9 [7–10], and 20% had baseline modified Rankin scale (mRS)≄2. The median last‐known normal to puncture time was 7.7 [3.1–11.5] hours, and puncture‐to‐reperfusion was 33 [23–52] minutes. The predominant occlusion site was the middle cerebral artery‐M1 (45%); medium vessel occlusions occurred in 97(4.6%) patients. The median number of passes was 1 [1–3] with 93% achieving expanded Treatment In Cerebral Ischemia2b50–3 reperfusion and 51% expanded Treatment In Cerebral Ischemia3/complete reperfusion. Symptomatic intracranial hemorrhage occurred in 5.3% of patients, with 37.3% functional independence (mRS0–2) and 26.4% mortality rates at 90‐days. Multivariable regression indicated older age, longer last‐normal to reperfusion, higher baseline National Institutes of Health Stroke Scale and glucose, lower Alberta stroke program early CT score, heart failure, and general anesthesia associated with lower 90‐day chances of mRS0–2 at 90‐days. Demographic, imaging, procedural, and clinical outcomes were similar in the SVIN Registry+. A comparison between AHA Guidelines‐eligible patients from the SVIN Registry against the Highly Effective Reperfusion evaluated in Multiple Endovascular Stroke Trials study population demonstrated comparable clinical outcomes. Conclusions The prospective SVIN Registry demonstrates that satisfactory procedural and clinical outcomes can be achieved in real‐world practice, serving as a platform for local quality improvement and the investigation of unexplored frontiers in the endovascular treatment of acute stroke

    Reactions of pyrrole, imidazole, and pyrazole with ozone:Kinetics and mechanisms

    Get PDF
    Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in complex structures where transformations during ozonation can occur. This study focused on the azole-ozone chemistry of pyrrole, imidazole, and pyrazole as model compounds. Reaction kinetics and ozonation products were determined by kinetic and analytical methods including NMR, LC-HRMS/MS, HPLC-UV, and IC-MS. Analyses of reactive oxygen species (O-1(2), & x2d9;OH, H2O2), quantum chemical computations (Gibbs energies), and kinetic simulations were used to further support the proposed reaction mechanisms. The species-specific second-order rate constants for the reactions of ozone with pyrrole and imidazole were (1.4 +/- 1.1) x 10(6) M-1 s(-1) and (2.3 +/- 0.1) x 10(5) M-1 s(-1), respectively. Pyrazole reacted more slowly with ozone at pH 7 (k(app) = (5.6 +/- 0.9) x 10(1) M-1 s(-1)). Maleimide was an identified product of pyrrole with a 34% yield. Together with other products, formate, formamide, and glyoxal, C and N mass balances of similar to 50% were achieved. Imidazole reacted with ozone to cyanate, formamide, and formate (similar to 100% yields per transformed imidazole, respectively) with a closed mass balance. For pyrazole, a high ozone : pyrazole molar stoichiometry of 4.6 was found, suggesting that the transformation products contributed to the over-stoichiometric consumption of ozone (e.g., hydroxypyrazoles). Glyoxal and formate were the only identified transformation products (C mass balance of 65%). Overall, the identified major products are suspected to hydrolyze and/or be biodegraded and thereby abated by a biological post-treatment typically following ozonation. However, as substructures of more complex compounds (e.g., micropollutants), they might be more persistent during biological post-treatment

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations
    • 

    corecore